// Arduino "bridge" code between host computer and WS2801-based digital // RGB LED pixels (e.g. Adafruit product ID #322). Intended for use // with USB-native boards such as Teensy or Adafruit 32u4 Breakout; // works on normal serial Arduinos, but throughput is severely limited. // LED data is streamed, not buffered, making this suitable for larger // installations (e.g. video wall, etc.) than could otherwise be held // in the Arduino's limited RAM. // Some effort is put into avoiding buffer underruns (where the output // side becomes starved of data). The WS2801 latch protocol, being // delay-based, could be inadvertently triggered if the USB bus or CPU // is swamped with other tasks. This code buffers incoming serial data // and introduces intentional pauses if there's a threat of the buffer // draining prematurely. The cost of this complexity is somewhat // reduced throughput, the gain is that most visual glitches are // avoided (though ultimately a function of the load on the USB bus and // host CPU, and out of our control). // LED data and clock lines are connected to the Arduino's SPI output. // On traditional Arduino boards, SPI data out is digital pin 11 and // clock is digital pin 13. On both Teensy and the 32u4 Breakout, // data out is pin B2, clock is B1. LEDs should be externally // powered -- trying to run any more than just a few off the Arduino's // 5V line is generally a Bad Idea. LED ground should also be // connected to Arduino ground. // -------------------------------------------------------------------- // This file is part of Adalight. // Adalight is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation, either version 3 of // the License, or (at your option) any later version. // Adalight is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public // License along with Adalight. If not, see // . // -------------------------------------------------------------------- // -------------------------------------------------------------------- // Note: This is a fork form the LEDstream. // // This version uses the LIB FastLED to work with the WS2812b LEDs. // // This Version works with a 150LED-Stripe with a frames/sec: 61, bytes/sec: 11524 // tested with the programme colorswirl (see the C folder) and an Arduino UNO. // // TOOD: // - Cleanup: remove the SPI code // - Show a startup Pattern // - remove flicker when sending more the 63 frames/sec. // // -------------------------------------------------------------------- #include #include #include #define NUM_LEDS 190 #define DATA_PIN 3 CRGB leds[NUM_LEDS]; // A 'magic word' (along with LED count & checksum) precedes each block // of LED data; this assists the microcontroller in syncing up with the // host-side software and properly issuing the latch (host I/O is // likely buffered, making usleep() unreliable for latch). You may see // an initial glitchy frame or two until the two come into alignment. // The magic word can be whatever sequence you like, but each character // should be unique, and frequent pixel values like 0 and 255 are // avoided -- fewer false positives. The host software will need to // generate a compatible header: immediately following the magic word // are three bytes: a 16-bit count of the number of LEDs (high byte // first) followed by a simple checksum value (high byte XOR low byte // XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B, // where 0 = off and 255 = max brightness. static const uint8_t magic[] = {'A','d','a'}; #define MAGICSIZE sizeof(magic) #define HEADERSIZE (MAGICSIZE + 3) #define MODE_HEADER 0 #define MODE_HOLD 1 #define MODE_DATA 2 // If no serial data is received for a while, the LEDs are shut off // automatically. This avoids the annoying "stuck pixel" look when // quitting LED display programs on the host computer. static const unsigned long serialTimeout = 15000; // 15 seconds void setup() { // Dirty trick: the circular buffer for serial data is 256 bytes, // and the "in" and "out" indices are unsigned 8-bit types -- this // much simplifies the cases where in/out need to "wrap around" the // beginning/end of the buffer. Otherwise there'd be a ton of bit- // masking and/or conditional code every time one of these indices // needs to change, slowing things down tremendously. uint8_t buffer[256], indexIn = 0, indexOut = 0, mode = MODE_HEADER, hi, lo, chk, i, spiFlag, r,b,g, l; int16_t bytesBuffered = 0, hold = 0, c; int32_t bytesRemaining; unsigned long startTime, lastByteTime, lastAckTime, t; uint32_t value,index = 0, ledcount; delay(5000); #if 1 power_adc_disable(); power_usart0_disable(); power_usart1_disable(); power_spi_disable(); power_twi_disable(); power_timer1_disable(); power_timer2_disable(); power_timer3_disable(); #endif FastLED.addLeds(leds, NUM_LEDS); Serial.begin(115200); // Teensy/32u4 disregards baud rate; is OK! //set the last LED to white leds[NUM_LEDS-1].setRGB(100,100,100); FastLED.show(); //delay(1000); //reset(); //delay(1000); Serial.print("Ada\n"); // Send ACK string to host RXLED1; TXLED1; startTime = micros(); lastByteTime = lastAckTime = millis(); // loop() is avoided as even that small bit of function overhead // has a measurable impact on this code's overall throughput. for(;;) { RXLED1; TXLED1; // Implementation is a simple finite-state machine. // Regardless of mode, check for serial input each time: t = millis(); if ((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) { buffer[indexIn++] = c; bytesBuffered++; lastByteTime = lastAckTime = t; // Reset timeout counters } else { // No data received. If this persists, send an ACK packet // to host once every second to alert it to our presence. if((t - lastAckTime) > 1000) { Serial.print("Ada\n"); // Send ACK string to host lastAckTime = t; // Reset counter } // If no data received for an extended time, turn off all LEDs. if((t - lastByteTime) > serialTimeout) { reset(); delay(1); // One millisecond pause = latch lastByteTime = t; // Reset counter } } switch(mode) { case MODE_HEADER: // In header-seeking mode. Is there enough data to check? if(bytesBuffered >= HEADERSIZE) { // Indeed. Check for a 'magic word' match. for(i=0; (i 0) and multiply by 3 for R,G,B. bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L); bytesBuffered -= 3; ledcount = 0; mode = MODE_HOLD; // Proceed to latch wait mode } else { // Checksum didn't match; search resumes after magic word. indexOut -= 3; // Rewind } } // else no header match. Resume at first mismatched byte. bytesBuffered -= i; } break; case MODE_HOLD: // Ostensibly "waiting for the latch from the prior frame // to complete" mode, but may also revert to this mode when // underrun prevention necessitates a delay. if((micros() - startTime) < hold) break; // Still holding; keep buffering // Latch/delay complete. Advance to data-issuing mode... //LED_PORT &= ~LED_PIN; // LED off mode = MODE_DATA; // ...and fall through (no break): case MODE_DATA: if(bytesRemaining > 2) { if(bytesBuffered > 2) { //we read one LED -> 3 Bytes r.g.b bytesBuffered -= 3; bytesRemaining -= 3; leds[ledcount++].setRGB(buffer[indexOut++], buffer[indexOut++], buffer[indexOut++]); } // If serial buffer is threatening to underrun, start // introducing progressively longer pauses to allow more // data to arrive (up to a point). if((bytesBuffered < 32) && (bytesRemaining > bytesBuffered) && (mode!=MODE_HEADER)) { startTime = micros(); hold = 100 + (32 - bytesBuffered) * 10; mode = MODE_HOLD; } } else { // End of data -- issue latch: startTime = micros(); hold = 1000; // Latch duration = 1000 uS //LED_PORT |= LED_PIN; // LED on mode = MODE_HEADER; // Begin next header search FastLED.show(); } } // end switch } // end for(;;) } void reset() { for (uint16_t i=0; i< NUM_LEDS; i++) leds[i] = CRGB::Black; FastLED.show(); } void loop() { // Not used. See note in setup() function. }