diff options
| author | manuel <manuel@mausz.at> | 2017-03-26 01:07:06 +0100 |
|---|---|---|
| committer | manuel <manuel@mausz.at> | 2017-03-26 01:07:06 +0100 |
| commit | 589d11bfd1e1cfc7a383bc0e6e09d9c5ec02288d (patch) | |
| tree | 892f5fd6a171b6a59c4d8bf6edba3b19cab78108 | |
| download | arduino-589d11bfd1e1cfc7a383bc0e6e09d9c5ec02288d.tar.gz arduino-589d11bfd1e1cfc7a383bc0e6e09d9c5ec02288d.tar.bz2 arduino-589d11bfd1e1cfc7a383bc0e6e09d9c5ec02288d.zip | |
Initial commit
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | couch_light/couch_light.ino | 283 | ||||
| -rw-r--r-- | hyperion/hyperion.ino | 279 | ||||
| -rw-r--r-- | lr_switch/lr_switch.ino | 197 | ||||
| -rw-r--r-- | rgbtv_light/rgbtv_light.ino | 241 | ||||
| -rw-r--r-- | testnode/testnode.ino | 316 | ||||
| -rw-r--r-- | tv_light/tv_light.ino | 335 |
7 files changed, 1652 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..7129b63 --- /dev/null +++ b/.gitignore | |||
| @@ -0,0 +1 @@ | |||
| aes_key.h | |||
diff --git a/couch_light/couch_light.ino b/couch_light/couch_light.ino new file mode 100644 index 0000000..b99381a --- /dev/null +++ b/couch_light/couch_light.ino | |||
| @@ -0,0 +1,283 @@ | |||
| 1 | /** | ||
| 2 | * The MySensors Arduino library handles the wireless radio link and protocol | ||
| 3 | * between your home built sensors/actuators and HA controller of choice. | ||
| 4 | * The sensors forms a self healing radio network with optional repeaters. Each | ||
| 5 | * repeater and gateway builds a routing tables in EEPROM which keeps track of the | ||
| 6 | * network topology allowing messages to be routed to nodes. | ||
| 7 | */ | ||
| 8 | |||
| 9 | // Enable debug prints to serial monitor | ||
| 10 | //#define MY_DEBUG | ||
| 11 | |||
| 12 | // configure radio | ||
| 13 | #define MY_RADIO_RFM69 | ||
| 14 | |||
| 15 | /** @brief RFM69 frequency to use (RF69_433MHZ for 433MHz, RF69_868MHZ for 868MHz or RF69_915MHZ for 915MHz). */ | ||
| 16 | #define MY_RFM69_FREQUENCY RF69_868MHZ | ||
| 17 | |||
| 18 | /** @brief Enable this if you're running the RFM69HW model. */ | ||
| 19 | //#define MY_IS_RFM69HW | ||
| 20 | |||
| 21 | /** @brief RFM69 Network ID. Use the same for all nodes that will talk to each other. */ | ||
| 22 | #define MY_RFM69_NETWORKID 1 | ||
| 23 | |||
| 24 | /** @brief Node id defaults to AUTO (tries to fetch id from controller). */ | ||
| 25 | #define MY_NODE_ID 1 | ||
| 26 | |||
| 27 | /** @brief If set, transport traffic is unmonitored and GW connection is optional */ | ||
| 28 | #define MY_TRANSPORT_DONT_CARE_MODE | ||
| 29 | |||
| 30 | /** @brief Node parent defaults to AUTO (tries to find a parent automatically). */ | ||
| 31 | #define MY_PARENT_NODE_ID 0 | ||
| 32 | |||
| 33 | /** @brief The user-defined AES key to use for EEPROM personalization */ | ||
| 34 | #include "aes_key.h" | ||
| 35 | |||
| 36 | // Enable repeater functionality for this node | ||
| 37 | //#define MY_REPEATER_FEATURE | ||
| 38 | |||
| 39 | /** @brief Enables RFM69 automatic transmit power control class. */ | ||
| 40 | //#define MY_RFM69_ATC | ||
| 41 | |||
| 42 | #ifdef MY_AES_KEY | ||
| 43 | /** @brief enables RFM69 encryption */ | ||
| 44 | #define MY_RFM69_ENABLE_ENCRYPTION | ||
| 45 | #endif | ||
| 46 | |||
| 47 | #include <Arduino.h> | ||
| 48 | #include <MySensors.h> | ||
| 49 | #include <Bounce2.h> | ||
| 50 | |||
| 51 | enum sensor_type : uint8_t | ||
| 52 | { | ||
| 53 | SENSOR_RELAY = (1u << 0), | ||
| 54 | SENSOR_DIMMER = (1u << 1), | ||
| 55 | SENSOR_BUTTON = (1u << 2), | ||
| 56 | }; | ||
| 57 | |||
| 58 | struct sensor_t | ||
| 59 | { | ||
| 60 | uint8_t id; | ||
| 61 | uint8_t type; | ||
| 62 | struct | ||
| 63 | { | ||
| 64 | uint8_t pin; // relay pin | ||
| 65 | } relay; | ||
| 66 | struct | ||
| 67 | { | ||
| 68 | uint8_t pin; // push button pin | ||
| 69 | Bounce bounce; | ||
| 70 | } button; | ||
| 71 | }; | ||
| 72 | |||
| 73 | struct sensor_t sensors[] = { | ||
| 74 | { | ||
| 75 | .id = 0, | ||
| 76 | .type = SENSOR_RELAY | SENSOR_BUTTON, | ||
| 77 | .relay = { .pin = 4 }, | ||
| 78 | .button = { .pin = 6, .bounce = Bounce() }, | ||
| 79 | }, | ||
| 80 | { | ||
| 81 | .id = 1, | ||
| 82 | .type = SENSOR_RELAY | SENSOR_BUTTON, | ||
| 83 | .relay = { .pin = 5 }, | ||
| 84 | .button = { .pin = 7, .bounce = Bounce() }, | ||
| 85 | }, | ||
| 86 | }; | ||
| 87 | |||
| 88 | //#define SAVE_RESTORE | ||
| 89 | |||
| 90 | #define NUM(a) (sizeof(a) / sizeof(*a)) | ||
| 91 | |||
| 92 | #define RELAY_ON 1 // GPIO value to write to turn on attached relay | ||
| 93 | #define RELAY_OFF 0 // GPIO value to write to turn off attached relay | ||
| 94 | |||
| 95 | #define TEMP_SENSOR_ID 254 | ||
| 96 | #define TEMP_READ_INTERVAL 1000L // read temp every 1 sec | ||
| 97 | #define TEMP_N_READS_MSG 60*60 // force temp message every n reads | ||
| 98 | #define TEMP_OFFSET 0 | ||
| 99 | |||
| 100 | MyMessage msg(0, V_STATUS); | ||
| 101 | |||
| 102 | inline void checkTemperature(void); | ||
| 103 | bool relayRead(struct sensor_t *sensor); | ||
| 104 | void relayWrite(struct sensor_t *sensor, bool state, bool send_update=false); | ||
| 105 | void flipRelay(struct sensor_t *sensor, bool send_update=false); | ||
| 106 | void checkButtons(void); | ||
| 107 | |||
| 108 | void before() | ||
| 109 | { | ||
| 110 | // set relay pins to output mode + restore to last known state | ||
| 111 | for (uint8_t i = 0; i < NUM(sensors); i++) | ||
| 112 | { | ||
| 113 | struct sensor_t *sensor = &sensors[i]; | ||
| 114 | if (sensor->type & SENSOR_RELAY) | ||
| 115 | { | ||
| 116 | pinMode(sensor->relay.pin, OUTPUT); | ||
| 117 | #ifdef SAVE_RESTORE | ||
| 118 | digitalWrite(sensor->relay.pin, loadState(sensor->id) ? RELAY_ON : RELAY_OFF); | ||
| 119 | #else | ||
| 120 | digitalWrite(sensor->relay.pin, RELAY_OFF); | ||
| 121 | #endif | ||
| 122 | } | ||
| 123 | } | ||
| 124 | |||
| 125 | #ifdef MY_AES_KEY | ||
| 126 | const uint8_t user_aes_key[16] = { MY_AES_KEY }; | ||
| 127 | uint8_t cur_aes_key[16]; | ||
| 128 | hwReadConfigBlock((void*)&cur_aes_key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, sizeof(cur_aes_key)); | ||
| 129 | if (memcmp(&user_aes_key, &cur_aes_key, 16) != 0) | ||
| 130 | { | ||
| 131 | hwWriteConfigBlock((void*)user_aes_key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, sizeof(user_aes_key)); | ||
| 132 | debug(PSTR("AES key written\n")); | ||
| 133 | } | ||
| 134 | #endif | ||
| 135 | } | ||
| 136 | |||
| 137 | void setup() | ||
| 138 | { | ||
| 139 | #ifdef MY_IS_RFM69HW | ||
| 140 | _radio.setHighPower(true); | ||
| 141 | #endif | ||
| 142 | #ifdef MY_RFM69_ATC | ||
| 143 | _radio.enableAutoPower(-70); | ||
| 144 | debug(PSTR("ATC enabled\n")); | ||
| 145 | #endif | ||
| 146 | |||
| 147 | for (uint8_t i = 0; i < NUM(sensors); i++) | ||
| 148 | { | ||
| 149 | struct sensor_t *sensor = &sensors[i]; | ||
| 150 | if (sensor->type & SENSOR_BUTTON) | ||
| 151 | { | ||
| 152 | pinMode(sensor->button.pin, INPUT_PULLUP); | ||
| 153 | sensor->button.bounce.attach(sensor->button.pin); | ||
| 154 | } | ||
| 155 | } | ||
| 156 | } | ||
| 157 | |||
| 158 | void presentation() | ||
| 159 | { | ||
| 160 | sendSketchInfo("CouchLight", "1.0"); | ||
| 161 | |||
| 162 | // register all sensors to gw (they will be created as child devices) | ||
| 163 | for (uint8_t i = 0; i < NUM(sensors); i++) | ||
| 164 | { | ||
| 165 | struct sensor_t *sensor = &sensors[i]; | ||
| 166 | if (sensor->type & SENSOR_RELAY || sensor->type & SENSOR_BUTTON) | ||
| 167 | present(sensor->id, S_BINARY); | ||
| 168 | } | ||
| 169 | |||
| 170 | #if TEMP_SENSOR_ID >= 0 | ||
| 171 | present(TEMP_SENSOR_ID, S_TEMP); | ||
| 172 | #endif | ||
| 173 | } | ||
| 174 | |||
| 175 | void loop() | ||
| 176 | { | ||
| 177 | //TODO maybe call _radio.rcCalibration() all 1000x changes? | ||
| 178 | checkButtons(); | ||
| 179 | |||
| 180 | #if TEMP_SENSOR_ID >= 0 | ||
| 181 | checkTemperature(); | ||
| 182 | #endif | ||
| 183 | } | ||
| 184 | |||
| 185 | inline void checkTemperature(void) | ||
| 186 | { | ||
| 187 | static unsigned long lastTempUpdate = millis(); | ||
| 188 | static unsigned int numTempUpdates = 0; | ||
| 189 | static float lastTemp = 0; | ||
| 190 | static MyMessage msgTemp(TEMP_SENSOR_ID, V_TEMP); | ||
| 191 | |||
| 192 | unsigned long now = millis(); | ||
| 193 | if (now - lastTempUpdate > TEMP_READ_INTERVAL) | ||
| 194 | { | ||
| 195 | float temp = _radio.readTemperature() + TEMP_OFFSET; | ||
| 196 | lastTempUpdate = now; | ||
| 197 | if (isnan(temp)) | ||
| 198 | Serial.println(F("Failed reading temperature")); | ||
| 199 | else if (abs(temp - lastTemp) >= 2 || numTempUpdates == TEMP_N_READS_MSG) | ||
| 200 | { | ||
| 201 | lastTemp = temp; | ||
| 202 | numTempUpdates = 0; | ||
| 203 | send(msgTemp.set(temp, 2)); | ||
| 204 | #ifdef MY_DEBUG | ||
| 205 | char str_temp[6]; | ||
| 206 | dtostrf(temp, 4, 2, str_temp); | ||
| 207 | debug(PSTR("Temperature: %s °C\n"), str_temp); | ||
| 208 | #endif | ||
| 209 | } | ||
| 210 | else | ||
| 211 | ++numTempUpdates; | ||
| 212 | } | ||
| 213 | } | ||
| 214 | |||
| 215 | void receive(const MyMessage &message) | ||
| 216 | { | ||
| 217 | if (message.type == V_STATUS || message.type == V_PERCENTAGE) | ||
| 218 | { | ||
| 219 | uint8_t sensor_id = message.sensor; | ||
| 220 | if (sensor_id >= NUM(sensors)) | ||
| 221 | { | ||
| 222 | Serial.print(F("Invalid sensor id:")); | ||
| 223 | Serial.println(sensor_id); | ||
| 224 | return; | ||
| 225 | } | ||
| 226 | |||
| 227 | struct sensor_t *sensor = &sensors[sensor_id]; | ||
| 228 | if (message.type == V_STATUS && sensor->type & SENSOR_RELAY) | ||
| 229 | { | ||
| 230 | if (mGetCommand(message) == C_REQ) | ||
| 231 | send(msg.setType(V_STATUS).setSensor(sensor->id).set(relayRead(sensor))); | ||
| 232 | else if (mGetCommand(message) == C_SET) | ||
| 233 | relayWrite(sensor, message.getBool()); | ||
| 234 | } | ||
| 235 | } | ||
| 236 | } | ||
| 237 | |||
| 238 | bool relayRead(struct sensor_t *sensor) | ||
| 239 | { | ||
| 240 | if (sensor->type & SENSOR_RELAY) | ||
| 241 | return digitalRead(sensor->relay.pin) == RELAY_ON; | ||
| 242 | return false; | ||
| 243 | } | ||
| 244 | |||
| 245 | void relayWrite(struct sensor_t *sensor, bool state, bool send_update) | ||
| 246 | { | ||
| 247 | if (!(sensor->type & SENSOR_RELAY)) | ||
| 248 | return; | ||
| 249 | |||
| 250 | Serial.print(F("Incoming change for relay: ")); | ||
| 251 | Serial.print(sensor->relay.pin); | ||
| 252 | Serial.print(F(", New state: ")); | ||
| 253 | Serial.println(state); | ||
| 254 | |||
| 255 | digitalWrite(sensor->relay.pin, state ? RELAY_ON : RELAY_OFF); | ||
| 256 | |||
| 257 | #ifdef SAVE_RESTORE | ||
| 258 | saveState(sensor->id, state ? RELAY_ON : RELAY_OFF); | ||
| 259 | #endif | ||
| 260 | |||
| 261 | if (send_update) | ||
| 262 | send(msg.setType(V_STATUS).setSensor(sensor->id).set(state)); | ||
| 263 | } | ||
| 264 | |||
| 265 | void flipRelay(struct sensor_t *sensor, bool send_update) | ||
| 266 | { | ||
| 267 | relayWrite(sensor, relayRead(sensor) ? RELAY_OFF : RELAY_ON, send_update); | ||
| 268 | } | ||
| 269 | |||
| 270 | inline void checkButtons(void) | ||
| 271 | { | ||
| 272 | for (uint8_t i = 0; i < NUM(sensors); i++) | ||
| 273 | { | ||
| 274 | struct sensor_t *sensor = &sensors[i]; | ||
| 275 | if (sensor->type & SENSOR_BUTTON) | ||
| 276 | { | ||
| 277 | sensor->button.bounce.update(); | ||
| 278 | if (sensor->button.bounce.fell()) | ||
| 279 | flipRelay(sensor, true); | ||
| 280 | } | ||
| 281 | } | ||
| 282 | } | ||
| 283 | |||
diff --git a/hyperion/hyperion.ino b/hyperion/hyperion.ino new file mode 100644 index 0000000..75e6858 --- /dev/null +++ b/hyperion/hyperion.ino | |||
| @@ -0,0 +1,279 @@ | |||
| 1 | // Arduino "bridge" code between host computer and WS2801-based digital | ||
| 2 | // RGB LED pixels (e.g. Adafruit product ID #322). Intended for use | ||
| 3 | // with USB-native boards such as Teensy or Adafruit 32u4 Breakout; | ||
| 4 | // works on normal serial Arduinos, but throughput is severely limited. | ||
| 5 | // LED data is streamed, not buffered, making this suitable for larger | ||
| 6 | // installations (e.g. video wall, etc.) than could otherwise be held | ||
| 7 | // in the Arduino's limited RAM. | ||
| 8 | |||
| 9 | // Some effort is put into avoiding buffer underruns (where the output | ||
| 10 | // side becomes starved of data). The WS2801 latch protocol, being | ||
| 11 | // delay-based, could be inadvertently triggered if the USB bus or CPU | ||
| 12 | // is swamped with other tasks. This code buffers incoming serial data | ||
| 13 | // and introduces intentional pauses if there's a threat of the buffer | ||
| 14 | // draining prematurely. The cost of this complexity is somewhat | ||
| 15 | // reduced throughput, the gain is that most visual glitches are | ||
| 16 | // avoided (though ultimately a function of the load on the USB bus and | ||
| 17 | // host CPU, and out of our control). | ||
| 18 | |||
| 19 | // LED data and clock lines are connected to the Arduino's SPI output. | ||
| 20 | // On traditional Arduino boards, SPI data out is digital pin 11 and | ||
| 21 | // clock is digital pin 13. On both Teensy and the 32u4 Breakout, | ||
| 22 | // data out is pin B2, clock is B1. LEDs should be externally | ||
| 23 | // powered -- trying to run any more than just a few off the Arduino's | ||
| 24 | // 5V line is generally a Bad Idea. LED ground should also be | ||
| 25 | // connected to Arduino ground. | ||
| 26 | |||
| 27 | // -------------------------------------------------------------------- | ||
| 28 | // This file is part of Adalight. | ||
| 29 | |||
| 30 | // Adalight is free software: you can redistribute it and/or modify | ||
| 31 | // it under the terms of the GNU Lesser General Public License as | ||
| 32 | // published by the Free Software Foundation, either version 3 of | ||
| 33 | // the License, or (at your option) any later version. | ||
| 34 | |||
| 35 | // Adalight is distributed in the hope that it will be useful, | ||
| 36 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 37 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 38 | // GNU Lesser General Public License for more details. | ||
| 39 | |||
| 40 | // You should have received a copy of the GNU Lesser General Public | ||
| 41 | // License along with Adalight. If not, see | ||
| 42 | // <http://www.gnu.org/licenses/>. | ||
| 43 | // -------------------------------------------------------------------- | ||
| 44 | |||
| 45 | |||
| 46 | // -------------------------------------------------------------------- | ||
| 47 | // Note: This is a fork form the LEDstream. | ||
| 48 | // | ||
| 49 | // This version uses the LIB FastLED to work with the WS2812b LEDs. | ||
| 50 | // | ||
| 51 | // This Version works with a 150LED-Stripe with a frames/sec: 61, bytes/sec: 11524 | ||
| 52 | // tested with the programme colorswirl (see the C folder) and an Arduino UNO. | ||
| 53 | // | ||
| 54 | // TOOD: | ||
| 55 | // - Cleanup: remove the SPI code | ||
| 56 | // - Show a startup Pattern | ||
| 57 | // - remove flicker when sending more the 63 frames/sec. | ||
| 58 | // | ||
| 59 | // -------------------------------------------------------------------- | ||
| 60 | |||
| 61 | #include <FastLED.h> | ||
| 62 | #include <avr/sleep.h> | ||
| 63 | #include <avr/power.h> | ||
| 64 | |||
| 65 | #define NUM_LEDS 190 | ||
| 66 | #define DATA_PIN 3 | ||
| 67 | CRGB leds[NUM_LEDS]; | ||
| 68 | |||
| 69 | // A 'magic word' (along with LED count & checksum) precedes each block | ||
| 70 | // of LED data; this assists the microcontroller in syncing up with the | ||
| 71 | // host-side software and properly issuing the latch (host I/O is | ||
| 72 | // likely buffered, making usleep() unreliable for latch). You may see | ||
| 73 | // an initial glitchy frame or two until the two come into alignment. | ||
| 74 | // The magic word can be whatever sequence you like, but each character | ||
| 75 | // should be unique, and frequent pixel values like 0 and 255 are | ||
| 76 | // avoided -- fewer false positives. The host software will need to | ||
| 77 | // generate a compatible header: immediately following the magic word | ||
| 78 | // are three bytes: a 16-bit count of the number of LEDs (high byte | ||
| 79 | // first) followed by a simple checksum value (high byte XOR low byte | ||
| 80 | // XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B, | ||
| 81 | // where 0 = off and 255 = max brightness. | ||
| 82 | |||
| 83 | static const uint8_t magic[] = {'A','d','a'}; | ||
| 84 | #define MAGICSIZE sizeof(magic) | ||
| 85 | #define HEADERSIZE (MAGICSIZE + 3) | ||
| 86 | |||
| 87 | #define MODE_HEADER 0 | ||
| 88 | #define MODE_HOLD 1 | ||
| 89 | #define MODE_DATA 2 | ||
| 90 | |||
| 91 | // If no serial data is received for a while, the LEDs are shut off | ||
| 92 | // automatically. This avoids the annoying "stuck pixel" look when | ||
| 93 | // quitting LED display programs on the host computer. | ||
| 94 | static const unsigned long serialTimeout = 15000; // 15 seconds | ||
| 95 | |||
| 96 | void setup() | ||
| 97 | { | ||
| 98 | // Dirty trick: the circular buffer for serial data is 256 bytes, | ||
| 99 | // and the "in" and "out" indices are unsigned 8-bit types -- this | ||
| 100 | // much simplifies the cases where in/out need to "wrap around" the | ||
| 101 | // beginning/end of the buffer. Otherwise there'd be a ton of bit- | ||
| 102 | // masking and/or conditional code every time one of these indices | ||
| 103 | // needs to change, slowing things down tremendously. | ||
| 104 | uint8_t | ||
| 105 | buffer[256], | ||
| 106 | indexIn = 0, | ||
| 107 | indexOut = 0, | ||
| 108 | mode = MODE_HEADER, | ||
| 109 | hi, lo, chk, i, spiFlag, | ||
| 110 | r,b,g, l; | ||
| 111 | int16_t | ||
| 112 | bytesBuffered = 0, | ||
| 113 | hold = 0, | ||
| 114 | c; | ||
| 115 | int32_t | ||
| 116 | bytesRemaining; | ||
| 117 | unsigned long | ||
| 118 | startTime, | ||
| 119 | lastByteTime, | ||
| 120 | lastAckTime, | ||
| 121 | t; | ||
| 122 | uint32_t value,index = 0, ledcount; | ||
| 123 | |||
| 124 | delay(5000); | ||
| 125 | |||
| 126 | #if 1 | ||
| 127 | power_adc_disable(); | ||
| 128 | power_usart0_disable(); | ||
| 129 | power_usart1_disable(); | ||
| 130 | power_spi_disable(); | ||
| 131 | power_twi_disable(); | ||
| 132 | power_timer1_disable(); | ||
| 133 | power_timer2_disable(); | ||
| 134 | power_timer3_disable(); | ||
| 135 | #endif | ||
| 136 | |||
| 137 | FastLED.addLeds<WS2812B, DATA_PIN, GRB>(leds, NUM_LEDS); | ||
| 138 | |||
| 139 | Serial.begin(115200); // Teensy/32u4 disregards baud rate; is OK! | ||
| 140 | |||
| 141 | //set the last LED to white | ||
| 142 | leds[NUM_LEDS-1].setRGB(100,100,100); | ||
| 143 | FastLED.show(); | ||
| 144 | //delay(1000); | ||
| 145 | //reset(); | ||
| 146 | //delay(1000); | ||
| 147 | |||
| 148 | Serial.print("Ada\n"); // Send ACK string to host | ||
| 149 | RXLED1; | ||
| 150 | TXLED1; | ||
| 151 | |||
| 152 | startTime = micros(); | ||
| 153 | lastByteTime = lastAckTime = millis(); | ||
| 154 | |||
| 155 | // loop() is avoided as even that small bit of function overhead | ||
| 156 | // has a measurable impact on this code's overall throughput. | ||
| 157 | |||
| 158 | for(;;) | ||
| 159 | { | ||
| 160 | RXLED1; | ||
| 161 | TXLED1; | ||
| 162 | |||
| 163 | // Implementation is a simple finite-state machine. | ||
| 164 | // Regardless of mode, check for serial input each time: | ||
| 165 | t = millis(); | ||
| 166 | if ((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) | ||
| 167 | { | ||
| 168 | buffer[indexIn++] = c; | ||
| 169 | bytesBuffered++; | ||
| 170 | lastByteTime = lastAckTime = t; // Reset timeout counters | ||
| 171 | } | ||
| 172 | else | ||
| 173 | { | ||
| 174 | // No data received. If this persists, send an ACK packet | ||
| 175 | // to host once every second to alert it to our presence. | ||
| 176 | if((t - lastAckTime) > 1000) | ||
| 177 | { | ||
| 178 | Serial.print("Ada\n"); // Send ACK string to host | ||
| 179 | lastAckTime = t; // Reset counter | ||
| 180 | } | ||
| 181 | // If no data received for an extended time, turn off all LEDs. | ||
| 182 | if((t - lastByteTime) > serialTimeout) | ||
| 183 | { | ||
| 184 | reset(); | ||
| 185 | delay(1); // One millisecond pause = latch | ||
| 186 | lastByteTime = t; // Reset counter | ||
| 187 | } | ||
| 188 | } | ||
| 189 | |||
| 190 | switch(mode) | ||
| 191 | { | ||
| 192 | case MODE_HEADER: | ||
| 193 | // In header-seeking mode. Is there enough data to check? | ||
| 194 | if(bytesBuffered >= HEADERSIZE) | ||
| 195 | { | ||
| 196 | // Indeed. Check for a 'magic word' match. | ||
| 197 | for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]);); | ||
| 198 | if(i == MAGICSIZE) | ||
| 199 | { | ||
| 200 | // Magic word matches. Now how about the checksum? | ||
| 201 | hi = buffer[indexOut++]; | ||
| 202 | lo = buffer[indexOut++]; | ||
| 203 | chk = buffer[indexOut++]; | ||
| 204 | if(chk == (hi ^ lo ^ 0x55)) | ||
| 205 | { | ||
| 206 | // Checksum looks valid. Get 16-bit LED count, add 1 | ||
| 207 | // (# LEDs is always > 0) and multiply by 3 for R,G,B. | ||
| 208 | bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L); | ||
| 209 | bytesBuffered -= 3; | ||
| 210 | ledcount = 0; | ||
| 211 | mode = MODE_HOLD; // Proceed to latch wait mode | ||
| 212 | } | ||
| 213 | else | ||
| 214 | { | ||
| 215 | // Checksum didn't match; search resumes after magic word. | ||
| 216 | indexOut -= 3; // Rewind | ||
| 217 | } | ||
| 218 | } // else no header match. Resume at first mismatched byte. | ||
| 219 | bytesBuffered -= i; | ||
| 220 | } | ||
| 221 | break; | ||
| 222 | |||
| 223 | case MODE_HOLD: | ||
| 224 | // Ostensibly "waiting for the latch from the prior frame | ||
| 225 | // to complete" mode, but may also revert to this mode when | ||
| 226 | // underrun prevention necessitates a delay. | ||
| 227 | |||
| 228 | if((micros() - startTime) < hold) break; // Still holding; keep buffering | ||
| 229 | |||
| 230 | // Latch/delay complete. Advance to data-issuing mode... | ||
| 231 | //LED_PORT &= ~LED_PIN; // LED off | ||
| 232 | mode = MODE_DATA; // ...and fall through (no break): | ||
| 233 | |||
| 234 | case MODE_DATA: | ||
| 235 | if(bytesRemaining > 2) | ||
| 236 | { | ||
| 237 | if(bytesBuffered > 2) | ||
| 238 | { | ||
| 239 | //we read one LED -> 3 Bytes r.g.b | ||
| 240 | bytesBuffered -= 3; | ||
| 241 | bytesRemaining -= 3; | ||
| 242 | leds[ledcount++].setRGB(buffer[indexOut++], buffer[indexOut++], buffer[indexOut++]); | ||
| 243 | } | ||
| 244 | // If serial buffer is threatening to underrun, start | ||
| 245 | // introducing progressively longer pauses to allow more | ||
| 246 | // data to arrive (up to a point). | ||
| 247 | if((bytesBuffered < 32) && (bytesRemaining > bytesBuffered) && (mode!=MODE_HEADER)) | ||
| 248 | { | ||
| 249 | startTime = micros(); | ||
| 250 | hold = 100 + (32 - bytesBuffered) * 10; | ||
| 251 | mode = MODE_HOLD; | ||
| 252 | } | ||
| 253 | } | ||
| 254 | else | ||
| 255 | { | ||
| 256 | // End of data -- issue latch: | ||
| 257 | startTime = micros(); | ||
| 258 | hold = 1000; // Latch duration = 1000 uS | ||
| 259 | //LED_PORT |= LED_PIN; // LED on | ||
| 260 | mode = MODE_HEADER; // Begin next header search | ||
| 261 | FastLED.show(); | ||
| 262 | } | ||
| 263 | } // end switch | ||
| 264 | } // end for(;;) | ||
| 265 | } | ||
| 266 | |||
| 267 | void reset() | ||
| 268 | { | ||
| 269 | for (uint16_t i=0; i< NUM_LEDS; i++) | ||
| 270 | leds[i] = CRGB::Black; | ||
| 271 | FastLED.show(); | ||
| 272 | } | ||
| 273 | |||
| 274 | void loop() | ||
| 275 | { | ||
| 276 | // Not used. See note in setup() function. | ||
| 277 | } | ||
| 278 | |||
| 279 | |||
diff --git a/lr_switch/lr_switch.ino b/lr_switch/lr_switch.ino new file mode 100644 index 0000000..673eb3a --- /dev/null +++ b/lr_switch/lr_switch.ino | |||
| @@ -0,0 +1,197 @@ | |||
| 1 | /** | ||
| 2 | * The MySensors Arduino library handles the wireless radio link and protocol | ||
| 3 | * between your home built sensors/actuators and HA controller of choice. | ||
| 4 | * The sensors forms a self healing radio network with optional repeaters. Each | ||
| 5 | * repeater and gateway builds a routing tables in EEPROM which keeps track of the | ||
| 6 | * network topology allowing messages to be routed to nodes. | ||
| 7 | */ | ||
| 8 | |||
| 9 | // Enable debug prints to serial monitor | ||
| 10 | //#define MY_DEBUG | ||
| 11 | |||
| 12 | // configure radio | ||
| 13 | #define MY_RADIO_RFM69 | ||
| 14 | |||
| 15 | /** @brief RFM69 frequency to use (RF69_433MHZ for 433MHz, RF69_868MHZ for 868MHz or RF69_915MHZ for 915MHz). */ | ||
| 16 | #define MY_RFM69_FREQUENCY RF69_868MHZ | ||
| 17 | |||
| 18 | /** @brief Enable this if you're running the RFM69HW model. */ | ||
| 19 | #define MY_IS_RFM69HW | ||
| 20 | |||
| 21 | /** @brief RFM69 Network ID. Use the same for all nodes that will talk to each other. */ | ||
| 22 | #define MY_RFM69_NETWORKID 1 | ||
| 23 | |||
| 24 | /** @brief Node id defaults to AUTO (tries to fetch id from controller). */ | ||
| 25 | #define MY_NODE_ID 3 | ||
| 26 | |||
| 27 | /** @brief If set, transport traffic is unmonitored and GW connection is optional */ | ||
| 28 | #define MY_TRANSPORT_DONT_CARE_MODE | ||
| 29 | |||
| 30 | /** @brief Node parent defaults to AUTO (tries to find a parent automatically). */ | ||
| 31 | #define MY_PARENT_NODE_ID 0 | ||
| 32 | |||
| 33 | /** @brief The user-defined AES key to use for EEPROM personalization */ | ||
| 34 | #include "aes_key.h" | ||
| 35 | |||
| 36 | // Enable repeater functionality for this node | ||
| 37 | //#define MY_REPEATER_FEATURE | ||
| 38 | |||
| 39 | /** @brief Enables RFM69 automatic transmit power control class. */ | ||
| 40 | //#define MY_RFM69_ATC | ||
| 41 | |||
| 42 | #ifdef MY_AES_KEY | ||
| 43 | /** @brief enables RFM69 encryption */ | ||
| 44 | #define MY_RFM69_ENABLE_ENCRYPTION | ||
| 45 | #endif | ||
| 46 | |||
| 47 | #include <Arduino.h> | ||
| 48 | #include <MySensors.h> | ||
| 49 | |||
| 50 | enum sensor_type : uint8_t | ||
| 51 | { | ||
| 52 | SENSOR_RELAY = (1u << 0), | ||
| 53 | SENSOR_DIMMER = (1u << 1), | ||
| 54 | SENSOR_BUTTON = (1u << 2), | ||
| 55 | SENSOR_SCENE = (1u << 3), | ||
| 56 | }; | ||
| 57 | |||
| 58 | struct sensor_t | ||
| 59 | { | ||
| 60 | uint8_t id; | ||
| 61 | uint8_t type; | ||
| 62 | struct | ||
| 63 | { | ||
| 64 | uint8_t pin; // push button pin | ||
| 65 | } button; | ||
| 66 | }; | ||
| 67 | |||
| 68 | struct sensor_t sensors[] = { | ||
| 69 | { | ||
| 70 | .id = 0, | ||
| 71 | .type = SENSOR_BUTTON | SENSOR_SCENE, | ||
| 72 | .button = { .pin = 3 }, | ||
| 73 | }, | ||
| 74 | }; | ||
| 75 | |||
| 76 | #define NUM(a) (sizeof(a) / sizeof(*a)) | ||
| 77 | |||
| 78 | #define TEMP_SENSOR_ID -1 | ||
| 79 | #define TEMP_READ_INTERVAL 1000L // read temp every 1 sec | ||
| 80 | #define TEMP_N_READS_MSG 60*60 // force temp message every n reads | ||
| 81 | #define TEMP_OFFSET 0 | ||
| 82 | |||
| 83 | MyMessage msg(0, V_SCENE_ON); | ||
| 84 | |||
| 85 | inline void checkTemperature(void); | ||
| 86 | void wakeUp(void); | ||
| 87 | |||
| 88 | void before() | ||
| 89 | { | ||
| 90 | #ifdef MY_AES_KEY | ||
| 91 | const uint8_t user_aes_key[16] = { MY_AES_KEY }; | ||
| 92 | uint8_t cur_aes_key[16]; | ||
| 93 | hwReadConfigBlock((void*)&cur_aes_key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, sizeof(cur_aes_key)); | ||
| 94 | if (memcmp(&user_aes_key, &cur_aes_key, 16) != 0) | ||
| 95 | { | ||
| 96 | hwWriteConfigBlock((void*)user_aes_key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, sizeof(user_aes_key)); | ||
| 97 | debug(PSTR("AES key written\n")); | ||
| 98 | } | ||
| 99 | #endif | ||
| 100 | } | ||
| 101 | |||
| 102 | void setup() | ||
| 103 | { | ||
| 104 | #ifdef MY_IS_RFM69HW | ||
| 105 | _radio.setHighPower(true); | ||
| 106 | #endif | ||
| 107 | //_radio.setPowerLevel(10); | ||
| 108 | #ifdef MY_RFM69_ATC | ||
| 109 | _radio.enableAutoPower(-70); | ||
| 110 | debug(PSTR("ATC enabled\n")); | ||
| 111 | #endif | ||
| 112 | |||
| 113 | for (uint8_t i = 0; i < NUM(sensors); i++) | ||
| 114 | { | ||
| 115 | struct sensor_t *sensor = &sensors[i]; | ||
| 116 | if (sensor->type & SENSOR_BUTTON) | ||
| 117 | pinMode(sensor->button.pin, INPUT_PULLUP); | ||
| 118 | } | ||
| 119 | } | ||
| 120 | |||
| 121 | void presentation() | ||
| 122 | { | ||
| 123 | sendSketchInfo("LRSwitch", "1.0"); | ||
| 124 | |||
| 125 | // register all sensors to gw (they will be created as child devices) | ||
| 126 | for (uint8_t i = 0; i < NUM(sensors); i++) | ||
| 127 | { | ||
| 128 | struct sensor_t *sensor = &sensors[i]; | ||
| 129 | if (sensor->type & SENSOR_SCENE) | ||
| 130 | present(sensor->id, S_SCENE_CONTROLLER); | ||
| 131 | } | ||
| 132 | |||
| 133 | #if TEMP_SENSOR_ID >= 0 | ||
| 134 | present(TEMP_SENSOR_ID, S_TEMP); | ||
| 135 | #endif | ||
| 136 | } | ||
| 137 | |||
| 138 | void loop() | ||
| 139 | { | ||
| 140 | //TODO maybe call _radio.rcCalibration() all 1000x changes? | ||
| 141 | |||
| 142 | struct sensor_t *sensor = &sensors[0]; | ||
| 143 | uint8_t pin = sensor->button.pin; | ||
| 144 | |||
| 145 | // delay() instead of sleep() | ||
| 146 | // sleep() will for whatever reason trigger the external interrupt?! | ||
| 147 | delay(1000); | ||
| 148 | |||
| 149 | Serial.println("r"); | ||
| 150 | Serial.flush(); | ||
| 151 | uint8_t state_before = digitalRead(pin); | ||
| 152 | int8_t intr = sleep(digitalPinToInterrupt(pin), CHANGE, 0); | ||
| 153 | if (intr == digitalPinToInterrupt(pin)) | ||
| 154 | { | ||
| 155 | uint8_t state_now = digitalRead(pin); | ||
| 156 | if (state_before != state_now) | ||
| 157 | { | ||
| 158 | Serial.println("m"); | ||
| 159 | send(msg.setType(V_SCENE_ON).setSensor(sensor->id).set(1)); | ||
| 160 | } | ||
| 161 | } | ||
| 162 | |||
| 163 | #if TEMP_SENSOR_ID >= 0 | ||
| 164 | checkTemperature(); | ||
| 165 | #endif | ||
| 166 | } | ||
| 167 | |||
| 168 | inline void checkTemperature(void) | ||
| 169 | { | ||
| 170 | static unsigned long lastTempUpdate = millis(); | ||
| 171 | static unsigned int numTempUpdates = 0; | ||
| 172 | static float lastTemp = 0; | ||
| 173 | static MyMessage msgTemp(TEMP_SENSOR_ID, V_TEMP); | ||
| 174 | |||
| 175 | unsigned long now = millis(); | ||
| 176 | if (now - lastTempUpdate > TEMP_READ_INTERVAL) | ||
| 177 | { | ||
| 178 | float temp = _radio.readTemperature() + TEMP_OFFSET; | ||
| 179 | lastTempUpdate = now; | ||
| 180 | if (isnan(temp)) | ||
| 181 | Serial.println(F("Failed reading temperature")); | ||
| 182 | else if (abs(temp - lastTemp) >= 2 || numTempUpdates == TEMP_N_READS_MSG) | ||
| 183 | { | ||
| 184 | lastTemp = temp; | ||
| 185 | numTempUpdates = 0; | ||
| 186 | send(msgTemp.set(temp, 2)); | ||
| 187 | #ifdef MY_DEBUG | ||
| 188 | char str_temp[6]; | ||
| 189 | dtostrf(temp, 4, 2, str_temp); | ||
| 190 | debug(PSTR("Temperature: %s °C\n"), str_temp); | ||
| 191 | #endif | ||
| 192 | } | ||
| 193 | else | ||
| 194 | ++numTempUpdates; | ||
| 195 | } | ||
| 196 | } | ||
| 197 | |||
diff --git a/rgbtv_light/rgbtv_light.ino b/rgbtv_light/rgbtv_light.ino new file mode 100644 index 0000000..98120a6 --- /dev/null +++ b/rgbtv_light/rgbtv_light.ino | |||
| @@ -0,0 +1,241 @@ | |||
| 1 | /** | ||
| 2 | * The MySensors Arduino library handles the wireless radio link and protocol | ||
| 3 | * between your home built sensors/actuators and HA controller of choice. | ||
| 4 | * The sensors forms a self healing radio network with optional repeaters. Each | ||
| 5 | * repeater and gateway builds a routing tables in EEPROM which keeps track of the | ||
| 6 | * network topology allowing messages to be routed to nodes. | ||
| 7 | */ | ||
| 8 | |||
| 9 | // Enable debug prints to serial monitor | ||
| 10 | #define MY_DEBUG | ||
| 11 | |||
| 12 | // configure radio | ||
| 13 | #define MY_RADIO_RFM69 | ||
| 14 | |||
| 15 | /** @brief RFM69 frequency to use (RF69_433MHZ for 433MHz, RF69_868MHZ for 868MHz or RF69_915MHZ for 915MHz). */ | ||
| 16 | #define MY_RFM69_FREQUENCY RF69_868MHZ | ||
| 17 | |||
| 18 | /** @brief Enable this if you're running the RFM69HW model. */ | ||
| 19 | //#define MY_IS_RFM69HW | ||
| 20 | |||
| 21 | /** @brief RFM69 Network ID. Use the same for all nodes that will talk to each other. */ | ||
| 22 | #define MY_RFM69_NETWORKID 1 | ||
| 23 | |||
| 24 | /** @brief Node id defaults to AUTO (tries to fetch id from controller). */ | ||
| 25 | #define MY_NODE_ID 3 | ||
| 26 | |||
| 27 | /** @brief If set, transport traffic is unmonitored and GW connection is optional */ | ||
| 28 | #define MY_TRANSPORT_DONT_CARE_MODE | ||
| 29 | |||
| 30 | /** @brief Node parent defaults to AUTO (tries to find a parent automatically). */ | ||
| 31 | #define MY_PARENT_NODE_ID 0 | ||
| 32 | |||
| 33 | /** @brief The user-defined AES key to use for EEPROM personalization */ | ||
| 34 | #include "aes_key.h" | ||
| 35 | |||
| 36 | // Enable repeater functionality for this node | ||
| 37 | //#define MY_REPEATER_FEATURE | ||
| 38 | |||
| 39 | /** @brief Enables RFM69 automatic transmit power control class. */ | ||
| 40 | //#define MY_RFM69_ATC | ||
| 41 | |||
| 42 | #ifdef MY_AES_KEY | ||
| 43 | /** @brief enables RFM69 encryption */ | ||
| 44 | #define MY_RFM69_ENABLE_ENCRYPTION | ||
| 45 | #endif | ||
| 46 | |||
| 47 | #include <Arduino.h> | ||
| 48 | #include <MySensors.h> | ||
| 49 | #include <FastLED.h> | ||
| 50 | |||
| 51 | #define RELAY_1_PIN 4 // pin number of first relay (second on pin+1 etc) | ||
| 52 | #define NUMBER_OF_RELAYS 1 // Total number of attached relays | ||
| 53 | #define RELAY_ON 1 // GPIO value to write to turn on attached relay | ||
| 54 | #define RELAY_OFF 0 // GPIO value to write to turn off attached relay | ||
| 55 | |||
| 56 | #define RGB_PIN 7 | ||
| 57 | #define NUM_LEDS 30 | ||
| 58 | #define RGB_CHIPSET WS2812B | ||
| 59 | #define RGB_COLOR_ORDER GRB | ||
| 60 | #define RGB_CHILD_ID 0 | ||
| 61 | |||
| 62 | #define TEMP_READ_INTERVAL 1000L // read temp every 1 sec | ||
| 63 | #define TEMP_N_READS_MSG 60*60 // force temp message every n reads | ||
| 64 | #define TEMP_OFFSET 0 | ||
| 65 | #define TEMP_CHILD_ID 254 | ||
| 66 | |||
| 67 | MyMessage msgRGB(RGB_CHILD_ID, 0); | ||
| 68 | static uint8_t brightness = 128; | ||
| 69 | |||
| 70 | MyMessage msgRelais(0, V_STATUS); | ||
| 71 | |||
| 72 | unsigned long lastTempUpdate = millis(); | ||
| 73 | unsigned int numTempUpdates = 0; | ||
| 74 | float lastTemp = 0; | ||
| 75 | MyMessage msgTemp(TEMP_CHILD_ID, V_TEMP); | ||
| 76 | |||
| 77 | CRGB leds[NUM_LEDS]; | ||
| 78 | |||
| 79 | void changeRelay(uint8_t relay, uint8_t val, bool send_update=false); | ||
| 80 | |||
| 81 | void before() | ||
| 82 | { | ||
| 83 | // set relay pins to output mode + restore to last known state | ||
| 84 | for (uint8_t relay = 0; relay < NUMBER_OF_RELAYS; relay++) | ||
| 85 | { | ||
| 86 | pinMode(relay + RELAY_1_PIN, OUTPUT); | ||
| 87 | digitalWrite(relay + RELAY_1_PIN, loadState(relay) ? RELAY_ON : RELAY_OFF); | ||
| 88 | } | ||
| 89 | |||
| 90 | #ifdef MY_AES_KEY | ||
| 91 | const uint8_t user_aes_key[16] = { MY_AES_KEY }; | ||
| 92 | uint8_t cur_aes_key[16]; | ||
| 93 | hwReadConfigBlock((void*)&cur_aes_key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, sizeof(cur_aes_key)); | ||
| 94 | if (memcmp(&user_aes_key, &cur_aes_key, 16) != 0) | ||
| 95 | { | ||
| 96 | hwWriteConfigBlock((void*)user_aes_key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, sizeof(user_aes_key)); | ||
| 97 | debug(PSTR("AES key written\n")); | ||
| 98 | } | ||
| 99 | #endif | ||
| 100 | } | ||
| 101 | |||
| 102 | void setup() | ||
| 103 | { | ||
| 104 | #ifdef MY_RFM69_ATC | ||
| 105 | _radio.enableAutoPower(-70); | ||
| 106 | debug(PSTR("ATC enabled\n")); | ||
| 107 | #endif | ||
| 108 | FastLED.addLeds<RGB_CHIPSET, RGB_PIN, RGB_COLOR_ORDER>(leds, NUM_LEDS); | ||
| 109 | //TODO restore mode(static/ambilight)/color/brightness from flash? | ||
| 110 | FastLED.setBrightness(brightness); | ||
| 111 | } | ||
| 112 | |||
| 113 | void presentation() | ||
| 114 | { | ||
| 115 | // Send the sketch version information to the gateway and Controller | ||
| 116 | sendSketchInfo("Ambilight", "1.0"); | ||
| 117 | |||
| 118 | // Register all sensors to gw (they will be created as child devices) | ||
| 119 | present(0, S_RGB_LIGHT, "ambilight"); | ||
| 120 | #if 0 | ||
| 121 | for (uint8_t relay = 0; relay < NUMBER_OF_RELAYS; relay++) | ||
| 122 | present(relay + 1, S_BINARY); | ||
| 123 | present(TEMP_CHILD_ID, S_TEMP); | ||
| 124 | #endif | ||
| 125 | |||
| 126 | delay(3000); | ||
| 127 | send(msgRGB.setType(V_STATUS).set(1)); | ||
| 128 | delay(500); | ||
| 129 | send(msgRGB.setType(V_DIMMER).set(FastLED.getBrightness())); | ||
| 130 | delay(500); | ||
| 131 | send(msgRGB.setType(V_RGB).set("ffffff")); | ||
| 132 | FastLED.show(); | ||
| 133 | } | ||
| 134 | |||
| 135 | void loop() | ||
| 136 | { | ||
| 137 | //TODO maybe call _radio.rcCalibration() all 1000x changes? | ||
| 138 | |||
| 139 | //FastLED.show(); | ||
| 140 | //FastLED.delay(8); | ||
| 141 | |||
| 142 | #if 0 | ||
| 143 | // check temperature | ||
| 144 | unsigned long now = millis(); | ||
| 145 | if (now - lastTempUpdate > TEMP_READ_INTERVAL) | ||
| 146 | { | ||
| 147 | float temp = _radio.readTemperature() + TEMP_OFFSET; | ||
| 148 | lastTempUpdate = now; | ||
| 149 | if (isnan(temp)) | ||
| 150 | Serial.println("Failed reading temperature"); | ||
| 151 | else if (abs(temp - lastTemp) >= 2 || numTempUpdates == TEMP_N_READS_MSG) | ||
| 152 | { | ||
| 153 | lastTemp = temp; | ||
| 154 | numTempUpdates = 0; | ||
| 155 | send(msgTemp.set(temp, 2)); | ||
| 156 | #ifdef MY_DEBUG | ||
| 157 | char str_temp[6]; | ||
| 158 | dtostrf(temp, 4, 2, str_temp); | ||
| 159 | debug(PSTR("Temperature: %s °C\n"), str_temp); | ||
| 160 | #endif | ||
| 161 | } | ||
| 162 | else | ||
| 163 | ++numTempUpdates; | ||
| 164 | } | ||
| 165 | #endif | ||
| 166 | } | ||
| 167 | |||
| 168 | void receive(const MyMessage &message) | ||
| 169 | { | ||
| 170 | Serial.println(_radio.readRSSI()); | ||
| 171 | if (message.sensor == RGB_CHILD_ID) | ||
| 172 | { | ||
| 173 | if (mGetCommand(message) == C_SET) | ||
| 174 | { | ||
| 175 | if (message.type == V_STATUS) | ||
| 176 | { | ||
| 177 | bool val = message.getBool(); | ||
| 178 | // datatype=0, message=0/1 | ||
| 179 | Serial.println("light on/off"); | ||
| 180 | //TODO restore brightness. | ||
| 181 | } | ||
| 182 | else if (message.type == V_RGB && mGetLength(message) == 6) | ||
| 183 | { | ||
| 184 | uint32_t colorcode = strtol(message.getString(), NULL, 16); | ||
| 185 | fill_solid(leds, NUM_LEDS, CRGB(colorcode)); | ||
| 186 | FastLED.show(); | ||
| 187 | } | ||
| 188 | else if (message.type == V_PERCENTAGE) | ||
| 189 | { | ||
| 190 | //TODO fade? | ||
| 191 | uint8_t val = message.getByte(); | ||
| 192 | if (val < 0 || val > 100) | ||
| 193 | return; | ||
| 194 | Serial.print("dim: "); | ||
| 195 | Serial.println(val, DEC); | ||
| 196 | brightness = map(val, 0, 100, 0, 255); | ||
| 197 | Serial.println(brightness, DEC); | ||
| 198 | // datatype=0, message=1-100 | ||
| 199 | FastLED.setBrightness(brightness); | ||
| 200 | FastLED.show(); | ||
| 201 | } | ||
| 202 | } | ||
| 203 | } | ||
| 204 | |||
| 205 | #if 0 | ||
| 206 | if (message.type == V_STATUS && message.sensor >= 1) | ||
| 207 | { | ||
| 208 | uint8_t relay = message.sensor - 1; | ||
| 209 | if (relay >= NUMBER_OF_RELAYS) | ||
| 210 | { | ||
| 211 | Serial.print("Invalid relay index:"); | ||
| 212 | Serial.println(relay); | ||
| 213 | return; | ||
| 214 | } | ||
| 215 | |||
| 216 | if (mGetCommand(message) == C_REQ) | ||
| 217 | send(msg.setSensor(relay + 1).set(digitalRead(relay + RELAY_1_PIN))); | ||
| 218 | else if (mGetCommand(message) == C_SET) | ||
| 219 | changeRelay(relay, message.getBool() ? RELAY_ON : RELAY_OFF); | ||
| 220 | } | ||
| 221 | #endif | ||
| 222 | } | ||
| 223 | |||
| 224 | void changeRelay(uint8_t relay, uint8_t value, bool send_update) | ||
| 225 | { | ||
| 226 | if (relay >= NUMBER_OF_RELAYS) | ||
| 227 | return; | ||
| 228 | Serial.print("Incoming change for relay: "); | ||
| 229 | Serial.print(relay); | ||
| 230 | Serial.print(", New status: "); | ||
| 231 | Serial.println(value); | ||
| 232 | |||
| 233 | // change relay state + store state in eeprom | ||
| 234 | digitalWrite(relay + RELAY_1_PIN, value); | ||
| 235 | saveState(relay, value); | ||
| 236 | |||
| 237 | // send msg | ||
| 238 | if (send_update) | ||
| 239 | send(msgRelais.setSensor(relay + 1).set(value)); | ||
| 240 | } | ||
| 241 | |||
diff --git a/testnode/testnode.ino b/testnode/testnode.ino new file mode 100644 index 0000000..999c32a --- /dev/null +++ b/testnode/testnode.ino | |||
| @@ -0,0 +1,316 @@ | |||
| 1 | /** | ||
| 2 | * The MySensors Arduino library handles the wireless radio link and protocol | ||
| 3 | * between your home built sensors/actuators and HA controller of choice. | ||
| 4 | * The sensors forms a self healing radio network with optional repeaters. Each | ||
| 5 | * repeater and gateway builds a routing tables in EEPROM which keeps track of the | ||
| 6 | * network topology allowing messages to be routed to nodes. | ||
| 7 | */ | ||
| 8 | |||
| 9 | // Enable debug prints to serial monitor | ||
| 10 | #define MY_DEBUG | ||
| 11 | |||
| 12 | // configure radio | ||
| 13 | #define MY_RADIO_RFM69 | ||
| 14 | |||
| 15 | /** @brief RFM69 frequency to use (RF69_433MHZ for 433MHz, RF69_868MHZ for 868MHz or RF69_915MHZ for 915MHz). */ | ||
| 16 | #define MY_RFM69_FREQUENCY RF69_868MHZ | ||
| 17 | |||
| 18 | /** @brief Enable this if you're running the RFM69HW model. */ | ||
| 19 | //#define MY_IS_RFM69HW | ||
| 20 | |||
| 21 | /** @brief RFM69 Network ID. Use the same for all nodes that will talk to each other. */ | ||
| 22 | #define MY_RFM69_NETWORKID 1 | ||
| 23 | |||
| 24 | /** @brief Node id defaults to AUTO (tries to fetch id from controller). */ | ||
| 25 | #define MY_NODE_ID 4 | ||
| 26 | |||
| 27 | /** @brief If set, transport traffic is unmonitored and GW connection is optional */ | ||
| 28 | #define MY_TRANSPORT_DONT_CARE_MODE | ||
| 29 | |||
| 30 | /** @brief Node parent defaults to AUTO (tries to find a parent automatically). */ | ||
| 31 | #define MY_PARENT_NODE_ID 0 | ||
| 32 | |||
| 33 | /** @brief The user-defined AES key to use for EEPROM personalization */ | ||
| 34 | #include "aes_key.h" | ||
| 35 | |||
| 36 | // Enable repeater functionality for this node | ||
| 37 | //#define MY_REPEATER_FEATURE | ||
| 38 | |||
| 39 | /** @brief Enables RFM69 automatic transmit power control class. */ | ||
| 40 | //#define MY_RFM69_ATC | ||
| 41 | |||
| 42 | #ifdef MY_AES_KEY | ||
| 43 | /** @brief enables RFM69 encryption */ | ||
| 44 | #define MY_RFM69_ENABLE_ENCRYPTION | ||
| 45 | #endif | ||
| 46 | |||
| 47 | #include <Arduino.h> | ||
| 48 | #include <MySensors.h> | ||
| 49 | |||
| 50 | enum sensor_type : uint8_t | ||
| 51 | { | ||
| 52 | SENSOR_RELAY = (1u << 0), | ||
| 53 | SENSOR_DIMMER = (1u << 1), | ||
| 54 | SENSOR_BUTTON = (1u << 2), | ||
| 55 | SENSOR_SCENE = (1u << 3), | ||
| 56 | }; | ||
| 57 | |||
| 58 | struct sensor_t | ||
| 59 | { | ||
| 60 | uint8_t id; | ||
| 61 | uint8_t type; | ||
| 62 | struct | ||
| 63 | { | ||
| 64 | uint8_t pin; // relay pin | ||
| 65 | } relay; | ||
| 66 | struct | ||
| 67 | { | ||
| 68 | uint8_t pin; // dimmer pin | ||
| 69 | uint16_t level; // current dim level (0 to 100) | ||
| 70 | } dimmer; | ||
| 71 | }; | ||
| 72 | |||
| 73 | struct sensor_t sensors[] = { | ||
| 74 | { | ||
| 75 | .id = 0, | ||
| 76 | .type = SENSOR_RELAY, | ||
| 77 | .relay = { .pin = 3 }, | ||
| 78 | }, | ||
| 79 | { | ||
| 80 | .id = 1, | ||
| 81 | .type = SENSOR_RELAY | SENSOR_DIMMER, | ||
| 82 | .relay = { .pin = 4 }, | ||
| 83 | .dimmer = { .pin = 6, .level = 100 }, | ||
| 84 | }, | ||
| 85 | }; | ||
| 86 | |||
| 87 | //#define SAVE_RESTORE | ||
| 88 | |||
| 89 | #define NUM(a) (sizeof(a) / sizeof(*a)) | ||
| 90 | |||
| 91 | #define RELAY_ON 1 // GPIO value to write to turn on attached relay | ||
| 92 | #define RELAY_OFF 0 // GPIO value to write to turn off attached relay | ||
| 93 | |||
| 94 | #define DIMMER_FADE_DELAY 10 // Delay in ms for each percentage fade up/down (10ms = 1s full-range dim) | ||
| 95 | |||
| 96 | #define TEMP_SENSOR_ID 254 | ||
| 97 | #define TEMP_READ_INTERVAL 1000L // read temp every 1 sec | ||
| 98 | #define TEMP_N_READS_MSG 60*60 // force temp message every n reads | ||
| 99 | #define TEMP_OFFSET 0 | ||
| 100 | |||
| 101 | MyMessage msg(0, V_STATUS); | ||
| 102 | |||
| 103 | inline void checkTemperature(void); | ||
| 104 | bool relayRead(struct sensor_t *sensor); | ||
| 105 | void relayWrite(struct sensor_t *sensor, bool state, bool send_update=false); | ||
| 106 | void flipRelay(struct sensor_t *sensor, bool send_update=false); | ||
| 107 | void fadeDimmer(struct sensor_t *sensor, uint8_t level, bool send_update=false); | ||
| 108 | |||
| 109 | void before() | ||
| 110 | { | ||
| 111 | // set relay pins to output mode + restore to last known state | ||
| 112 | for (uint8_t i = 0; i < NUM(sensors); i++) | ||
| 113 | { | ||
| 114 | struct sensor_t *sensor = &sensors[i]; | ||
| 115 | if (sensor->type & SENSOR_RELAY) | ||
| 116 | { | ||
| 117 | pinMode(sensor->relay.pin, OUTPUT); | ||
| 118 | #ifdef SAVE_RESTORE | ||
| 119 | digitalWrite(sensor->relay.pin, loadState(sensor->id) ? RELAY_ON : RELAY_OFF); | ||
| 120 | #else | ||
| 121 | digitalWrite(sensor->relay.pin, RELAY_ON); | ||
| 122 | #endif | ||
| 123 | } | ||
| 124 | |||
| 125 | if (sensor->type & SENSOR_DIMMER) | ||
| 126 | { | ||
| 127 | pinMode(sensor->dimmer.pin, OUTPUT); | ||
| 128 | #ifdef SAVE_RESTORE | ||
| 129 | digitalWrite(sensor->relay.pin, loadState(NUM(sensors) + sensor->id)); | ||
| 130 | #else | ||
| 131 | analogWrite(sensor->dimmer.pin, map(sensor->dimmer.level, 0, 100, 0, 255)); | ||
| 132 | #endif | ||
| 133 | } | ||
| 134 | } | ||
| 135 | |||
| 136 | #ifdef MY_AES_KEY | ||
| 137 | const uint8_t user_aes_key[16] = { MY_AES_KEY }; | ||
| 138 | uint8_t cur_aes_key[16]; | ||
| 139 | hwReadConfigBlock((void*)&cur_aes_key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, sizeof(cur_aes_key)); | ||
| 140 | if (memcmp(&user_aes_key, &cur_aes_key, 16) != 0) | ||
| 141 | { | ||
| 142 | hwWriteConfigBlock((void*)user_aes_key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, sizeof(user_aes_key)); | ||
| 143 | debug(PSTR("AES key written\n")); | ||
| 144 | } | ||
| 145 | #endif | ||
| 146 | } | ||
| 147 | |||
| 148 | void setup() | ||
| 149 | { | ||
| 150 | #ifdef MY_IS_RFM69HW | ||
| 151 | _radio.setHighPower(true); | ||
| 152 | #endif | ||
| 153 | #ifdef MY_RFM69_ATC | ||
| 154 | _radio.enableAutoPower(-70); | ||
| 155 | debug(PSTR("ATC enabled\n")); | ||
| 156 | #endif | ||
| 157 | } | ||
| 158 | |||
| 159 | void presentation() | ||
| 160 | { | ||
| 161 | sendSketchInfo("TVLight", "1.0"); | ||
| 162 | |||
| 163 | // register all sensors to gw (they will be created as child devices) | ||
| 164 | for (uint8_t i = 0; i < NUM(sensors); i++) | ||
| 165 | { | ||
| 166 | struct sensor_t *sensor = &sensors[i]; | ||
| 167 | if (sensor->type & SENSOR_DIMMER) | ||
| 168 | present(sensor->id, S_DIMMER); | ||
| 169 | else if (sensor->type & SENSOR_RELAY) | ||
| 170 | present(sensor->id, S_BINARY); | ||
| 171 | } | ||
| 172 | |||
| 173 | #if TEMP_SENSOR_ID >= 0 | ||
| 174 | present(TEMP_SENSOR_ID, S_TEMP); | ||
| 175 | #endif | ||
| 176 | } | ||
| 177 | |||
| 178 | void loop() | ||
| 179 | { | ||
| 180 | //TODO maybe call _radio.rcCalibration() all 1000x changes? | ||
| 181 | #if TEMP_SENSOR_ID >= 0 | ||
| 182 | checkTemperature(); | ||
| 183 | #endif | ||
| 184 | } | ||
| 185 | |||
| 186 | inline void checkTemperature(void) | ||
| 187 | { | ||
| 188 | static unsigned long lastTempUpdate = millis(); | ||
| 189 | static unsigned int numTempUpdates = 0; | ||
| 190 | static float lastTemp = 0; | ||
| 191 | static MyMessage msgTemp(TEMP_SENSOR_ID, V_TEMP); | ||
| 192 | |||
| 193 | unsigned long now = millis(); | ||
| 194 | if (now - lastTempUpdate > TEMP_READ_INTERVAL) | ||
| 195 | { | ||
| 196 | float temp = _radio.readTemperature() + TEMP_OFFSET; | ||
| 197 | lastTempUpdate = now; | ||
| 198 | if (isnan(temp)) | ||
| 199 | Serial.println(F("Failed reading temperature")); | ||
| 200 | else if (abs(temp - lastTemp) >= 2 || numTempUpdates == TEMP_N_READS_MSG) | ||
| 201 | { | ||
| 202 | lastTemp = temp; | ||
| 203 | numTempUpdates = 0; | ||
| 204 | send(msgTemp.set(temp, 2)); | ||
| 205 | #ifdef MY_DEBUG | ||
| 206 | char str_temp[6]; | ||
| 207 | dtostrf(temp, 4, 2, str_temp); | ||
| 208 | debug(PSTR("Temperature: %s °C\n"), str_temp); | ||
| 209 | #endif | ||
| 210 | } | ||
| 211 | else | ||
| 212 | ++numTempUpdates; | ||
| 213 | } | ||
| 214 | } | ||
| 215 | |||
| 216 | void receive(const MyMessage &message) | ||
| 217 | { | ||
| 218 | if (message.type == V_STATUS || message.type == V_PERCENTAGE) | ||
| 219 | { | ||
| 220 | uint8_t sensor_id = message.sensor; | ||
| 221 | if (sensor_id >= NUM(sensors)) | ||
| 222 | { | ||
| 223 | Serial.print(F("Invalid sensor id:")); | ||
| 224 | Serial.println(sensor_id); | ||
| 225 | return; | ||
| 226 | } | ||
| 227 | |||
| 228 | struct sensor_t *sensor = &sensors[sensor_id]; | ||
| 229 | if (message.type == V_STATUS && sensor->type & SENSOR_RELAY) | ||
| 230 | { | ||
| 231 | if (mGetCommand(message) == C_REQ) | ||
| 232 | send(msg.setType(V_STATUS).setSensor(sensor->id).set(relayRead(sensor))); | ||
| 233 | else if (mGetCommand(message) == C_SET) | ||
| 234 | relayWrite(sensor, message.getBool()); | ||
| 235 | } | ||
| 236 | else if (message.type == V_PERCENTAGE && sensor->type & SENSOR_DIMMER) | ||
| 237 | { | ||
| 238 | if (mGetCommand(message) == C_REQ) | ||
| 239 | send(msg.setType(V_PERCENTAGE).setSensor(sensor->id).set(sensor->dimmer.level)); | ||
| 240 | else if (mGetCommand(message) == C_SET) | ||
| 241 | { | ||
| 242 | uint16_t level = message.getUInt(); | ||
| 243 | if (level > 255) | ||
| 244 | return; | ||
| 245 | fadeDimmer(sensor, level); | ||
| 246 | } | ||
| 247 | } | ||
| 248 | } | ||
| 249 | } | ||
| 250 | |||
| 251 | bool relayRead(struct sensor_t *sensor) | ||
| 252 | { | ||
| 253 | if (sensor->type & SENSOR_RELAY) | ||
| 254 | return digitalRead(sensor->relay.pin) == RELAY_ON; | ||
| 255 | return false; | ||
| 256 | } | ||
| 257 | |||
| 258 | void relayWrite(struct sensor_t *sensor, bool state, bool send_update) | ||
| 259 | { | ||
| 260 | if (!(sensor->type & SENSOR_RELAY)) | ||
| 261 | return; | ||
| 262 | |||
| 263 | Serial.print(F("Incoming change for relay: ")); | ||
| 264 | Serial.print(sensor->relay.pin); | ||
| 265 | Serial.print(F(", New state: ")); | ||
| 266 | Serial.println(state); | ||
| 267 | |||
| 268 | digitalWrite(sensor->relay.pin, state ? RELAY_ON : RELAY_OFF); | ||
| 269 | |||
| 270 | #ifdef SAVE_RESTORE | ||
| 271 | saveState(sensor->id, state ? RELAY_ON : RELAY_OFF); | ||
| 272 | #endif | ||
| 273 | |||
| 274 | if (send_update) | ||
| 275 | send(msg.setType(V_STATUS).setSensor(sensor->id).set(state)); | ||
| 276 | } | ||
| 277 | |||
| 278 | void flipRelay(struct sensor_t *sensor, bool send_update) | ||
| 279 | { | ||
| 280 | relayWrite(sensor, relayRead(sensor) ? RELAY_OFF : RELAY_ON, send_update); | ||
| 281 | } | ||
| 282 | |||
| 283 | void fadeDimmer(struct sensor_t *sensor, uint8_t level, bool send_update) | ||
| 284 | { | ||
| 285 | if (!(sensor->type & SENSOR_DIMMER)) | ||
| 286 | return; | ||
| 287 | |||
| 288 | Serial.print(F("Incoming change for dimmer: ")); | ||
| 289 | Serial.print(sensor->dimmer.pin); | ||
| 290 | Serial.print(F(", Old level: ")); | ||
| 291 | Serial.print(sensor->dimmer.level); | ||
| 292 | Serial.print(F(", New level: ")); | ||
| 293 | Serial.println(level); | ||
| 294 | |||
| 295 | if (level > 0 && sensor->type & SENSOR_RELAY && !relayRead(sensor)) | ||
| 296 | relayWrite(sensor, RELAY_ON); | ||
| 297 | |||
| 298 | int delta = ((int8_t)(level - sensor->dimmer.level) < 0) ? -1 : 1; | ||
| 299 | while (sensor->dimmer.level != level) | ||
| 300 | { | ||
| 301 | sensor->dimmer.level += delta; | ||
| 302 | analogWrite(sensor->dimmer.pin, map(sensor->dimmer.level, 0, 100, 0, 255)); | ||
| 303 | delay(DIMMER_FADE_DELAY); | ||
| 304 | } | ||
| 305 | |||
| 306 | if (level == 0 && sensor->type & SENSOR_RELAY && relayRead(sensor)) | ||
| 307 | relayWrite(sensor, RELAY_OFF); | ||
| 308 | |||
| 309 | #ifdef SAVE_RESTORE | ||
| 310 | saveState(NUM(sensors) + sensor->id, level); | ||
| 311 | #endif | ||
| 312 | |||
| 313 | if (send_update) | ||
| 314 | send(msg.setType(V_PERCENTAGE).setSensor(sensor->id).set(level)); | ||
| 315 | } | ||
| 316 | |||
diff --git a/tv_light/tv_light.ino b/tv_light/tv_light.ino new file mode 100644 index 0000000..5588cef --- /dev/null +++ b/tv_light/tv_light.ino | |||
| @@ -0,0 +1,335 @@ | |||
| 1 | /** | ||
| 2 | * The MySensors Arduino library handles the wireless radio link and protocol | ||
| 3 | * between your home built sensors/actuators and HA controller of choice. | ||
| 4 | * The sensors forms a self healing radio network with optional repeaters. Each | ||
| 5 | * repeater and gateway builds a routing tables in EEPROM which keeps track of the | ||
| 6 | * network topology allowing messages to be routed to nodes. | ||
| 7 | */ | ||
| 8 | |||
| 9 | // Enable debug prints to serial monitor | ||
| 10 | //#define MY_DEBUG | ||
| 11 | |||
| 12 | // configure radio | ||
| 13 | #define MY_RADIO_RFM69 | ||
| 14 | |||
| 15 | /** @brief RFM69 frequency to use (RF69_433MHZ for 433MHz, RF69_868MHZ for 868MHz or RF69_915MHZ for 915MHz). */ | ||
| 16 | #define MY_RFM69_FREQUENCY RF69_868MHZ | ||
| 17 | |||
| 18 | /** @brief Enable this if you're running the RFM69HW model. */ | ||
| 19 | #define MY_IS_RFM69HW | ||
| 20 | |||
| 21 | /** @brief RFM69 Network ID. Use the same for all nodes that will talk to each other. */ | ||
| 22 | #define MY_RFM69_NETWORKID 1 | ||
| 23 | |||
| 24 | /** @brief Node id defaults to AUTO (tries to fetch id from controller). */ | ||
| 25 | #define MY_NODE_ID 2 | ||
| 26 | |||
| 27 | /** @brief If set, transport traffic is unmonitored and GW connection is optional */ | ||
| 28 | #define MY_TRANSPORT_DONT_CARE_MODE | ||
| 29 | |||
| 30 | /** @brief Node parent defaults to AUTO (tries to find a parent automatically). */ | ||
| 31 | #define MY_PARENT_NODE_ID 0 | ||
| 32 | |||
| 33 | /** @brief The user-defined AES key to use for EEPROM personalization */ | ||
| 34 | #include "aes_key.h" | ||
| 35 | |||
| 36 | // Enable repeater functionality for this node | ||
| 37 | //#define MY_REPEATER_FEATURE | ||
| 38 | |||
| 39 | /** @brief Enables RFM69 automatic transmit power control class. */ | ||
| 40 | //#define MY_RFM69_ATC | ||
| 41 | |||
| 42 | #ifdef MY_AES_KEY | ||
| 43 | /** @brief enables RFM69 encryption */ | ||
| 44 | #define MY_RFM69_ENABLE_ENCRYPTION | ||
| 45 | #endif | ||
| 46 | |||
| 47 | #include <Arduino.h> | ||
| 48 | #include <MySensors.h> | ||
| 49 | #include <avr/pgmspace.h> | ||
| 50 | |||
| 51 | enum sensor_type : uint8_t | ||
| 52 | { | ||
| 53 | SENSOR_RELAY = (1u << 0), | ||
| 54 | SENSOR_DIMMER = (1u << 1), | ||
| 55 | SENSOR_BUTTON = (1u << 2), | ||
| 56 | }; | ||
| 57 | |||
| 58 | struct sensor_t | ||
| 59 | { | ||
| 60 | uint8_t id; | ||
| 61 | uint8_t type; | ||
| 62 | struct | ||
| 63 | { | ||
| 64 | uint8_t pin; // relay pin | ||
| 65 | } relay; | ||
| 66 | struct | ||
| 67 | { | ||
| 68 | uint8_t pin; // dimmer pin | ||
| 69 | uint16_t level; // current dim level (0 to 100) | ||
| 70 | } dimmer; | ||
| 71 | }; | ||
| 72 | |||
| 73 | struct sensor_t sensors[] = { | ||
| 74 | { | ||
| 75 | .id = 0, | ||
| 76 | .type = SENSOR_RELAY, | ||
| 77 | .relay = { .pin = 4 }, | ||
| 78 | }, | ||
| 79 | { | ||
| 80 | .id = 1, | ||
| 81 | .type = SENSOR_RELAY | SENSOR_DIMMER, | ||
| 82 | //.type = SENSOR_RELAY, | ||
| 83 | .relay = { .pin = 5 }, | ||
| 84 | .dimmer = { .pin = 6, .level = 100 }, | ||
| 85 | }, | ||
| 86 | }; | ||
| 87 | |||
| 88 | //#define SAVE_RESTORE | ||
| 89 | |||
| 90 | #define NUM(a) (sizeof(a) / sizeof(*a)) | ||
| 91 | |||
| 92 | #define RELAY_ON 1 // GPIO value to write to turn on attached relay | ||
| 93 | #define RELAY_OFF 0 // GPIO value to write to turn off attached relay | ||
| 94 | |||
| 95 | #define DIMMER_FADE_DELAY 40 // Delay in ms for each percentage fade up/down (10ms = 1s full-range dim) | ||
| 96 | |||
| 97 | #define TEMP_SENSOR_ID 254 | ||
| 98 | #define TEMP_READ_INTERVAL 1000L // read temp every 1 sec | ||
| 99 | #define TEMP_N_READS_MSG 60*60 // force temp message every n reads | ||
| 100 | #define TEMP_OFFSET 0 | ||
| 101 | |||
| 102 | MyMessage msg(0, V_STATUS); | ||
| 103 | |||
| 104 | inline void checkTemperature(void); | ||
| 105 | bool relayRead(struct sensor_t *sensor); | ||
| 106 | void relayWrite(struct sensor_t *sensor, bool state, bool send_update=false); | ||
| 107 | void flipRelay(struct sensor_t *sensor, bool send_update=false); | ||
| 108 | inline uint8_t pwmValue(uint8_t level); | ||
| 109 | void fadeDimmer(struct sensor_t *sensor, uint8_t level, bool send_update=false); | ||
| 110 | |||
| 111 | void before() | ||
| 112 | { | ||
| 113 | // set relay pins to output mode + restore to last known state | ||
| 114 | for (uint8_t i = 0; i < NUM(sensors); i++) | ||
| 115 | { | ||
| 116 | struct sensor_t *sensor = &sensors[i]; | ||
| 117 | if (sensor->type & SENSOR_RELAY) | ||
| 118 | { | ||
| 119 | pinMode(sensor->relay.pin, OUTPUT); | ||
| 120 | #ifdef SAVE_RESTORE | ||
| 121 | digitalWrite(sensor->relay.pin, loadState(sensor->id) ? RELAY_ON : RELAY_OFF); | ||
| 122 | #else | ||
| 123 | digitalWrite(sensor->relay.pin, RELAY_OFF); | ||
| 124 | #endif | ||
| 125 | } | ||
| 126 | |||
| 127 | if (sensor->type & SENSOR_DIMMER) | ||
| 128 | { | ||
| 129 | pinMode(sensor->dimmer.pin, OUTPUT); | ||
| 130 | #ifdef SAVE_RESTORE | ||
| 131 | uint8_t level = loadState(NUM(sensors) + sensor->id; | ||
| 132 | #else | ||
| 133 | uint8_t level = sensor->dimmer.level; | ||
| 134 | #endif | ||
| 135 | analogWrite(sensor->dimmer.pin, pwmValue(level)); | ||
| 136 | } | ||
| 137 | } | ||
| 138 | |||
| 139 | #ifdef MY_AES_KEY | ||
| 140 | const uint8_t user_aes_key[16] = { MY_AES_KEY }; | ||
| 141 | uint8_t cur_aes_key[16]; | ||
| 142 | hwReadConfigBlock((void*)&cur_aes_key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, sizeof(cur_aes_key)); | ||
| 143 | if (memcmp(&user_aes_key, &cur_aes_key, 16) != 0) | ||
| 144 | { | ||
| 145 | hwWriteConfigBlock((void*)user_aes_key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, sizeof(user_aes_key)); | ||
| 146 | debug(PSTR("AES key written\n")); | ||
| 147 | } | ||
| 148 | #endif | ||
| 149 | } | ||
| 150 | |||
| 151 | void setup() | ||
| 152 | { | ||
| 153 | #ifdef MY_IS_RFM69HW | ||
| 154 | _radio.setHighPower(true); | ||
| 155 | #endif | ||
| 156 | #ifdef MY_RFM69_ATC | ||
| 157 | _radio.enableAutoPower(-70); | ||
| 158 | debug(PSTR("ATC enabled\n")); | ||
| 159 | #endif | ||
| 160 | } | ||
| 161 | |||
| 162 | void presentation() | ||
| 163 | { | ||
| 164 | sendSketchInfo("TVLight", "1.0"); | ||
| 165 | |||
| 166 | // register all sensors to gw (they will be created as child devices) | ||
| 167 | for (uint8_t i = 0; i < NUM(sensors); i++) | ||
| 168 | { | ||
| 169 | struct sensor_t *sensor = &sensors[i]; | ||
| 170 | if (sensor->type & SENSOR_DIMMER) | ||
| 171 | present(sensor->id, S_DIMMER); | ||
| 172 | else if (sensor->type & SENSOR_RELAY || sensor->type & SENSOR_BUTTON) | ||
| 173 | present(sensor->id, S_BINARY); | ||
| 174 | } | ||
| 175 | |||
| 176 | #if TEMP_SENSOR_ID >= 0 | ||
| 177 | present(TEMP_SENSOR_ID, S_TEMP); | ||
| 178 | #endif | ||
| 179 | } | ||
| 180 | |||
| 181 | void loop() | ||
| 182 | { | ||
| 183 | //TODO maybe call _radio.rcCalibration() all 1000x changes? | ||
| 184 | #if TEMP_SENSOR_ID >= 0 | ||
| 185 | checkTemperature(); | ||
| 186 | #endif | ||
| 187 | } | ||
| 188 | |||
| 189 | inline void checkTemperature(void) | ||
| 190 | { | ||
| 191 | static unsigned long lastTempUpdate = millis(); | ||
| 192 | static unsigned int numTempUpdates = 0; | ||
| 193 | static float lastTemp = 0; | ||
| 194 | static MyMessage msgTemp(TEMP_SENSOR_ID, V_TEMP); | ||
| 195 | |||
| 196 | unsigned long now = millis(); | ||
| 197 | if (now - lastTempUpdate > TEMP_READ_INTERVAL) | ||
| 198 | { | ||
| 199 | float temp = _radio.readTemperature() + TEMP_OFFSET; | ||
| 200 | lastTempUpdate = now; | ||
| 201 | if (isnan(temp)) | ||
| 202 | Serial.println(F("Failed reading temperature")); | ||
| 203 | else if (abs(temp - lastTemp) >= 2 || numTempUpdates == TEMP_N_READS_MSG) | ||
| 204 | { | ||
| 205 | lastTemp = temp; | ||
| 206 | numTempUpdates = 0; | ||
| 207 | send(msgTemp.set(temp, 2)); | ||
| 208 | #ifdef MY_DEBUG | ||
| 209 | char str_temp[6]; | ||
| 210 | dtostrf(temp, 4, 2, str_temp); | ||
| 211 | debug(PSTR("Temperature: %s °C\n"), str_temp); | ||
| 212 | #endif | ||
| 213 | } | ||
| 214 | else | ||
| 215 | ++numTempUpdates; | ||
| 216 | } | ||
| 217 | } | ||
| 218 | |||
| 219 | void receive(const MyMessage &message) | ||
| 220 | { | ||
| 221 | if (message.type == V_STATUS || message.type == V_PERCENTAGE) | ||
| 222 | { | ||
| 223 | uint8_t sensor_id = message.sensor; | ||
| 224 | if (sensor_id >= NUM(sensors)) | ||
| 225 | { | ||
| 226 | Serial.print(F("Invalid sensor id:")); | ||
| 227 | Serial.println(sensor_id); | ||
| 228 | return; | ||
| 229 | } | ||
| 230 | |||
| 231 | struct sensor_t *sensor = &sensors[sensor_id]; | ||
| 232 | if (message.type == V_STATUS && sensor->type & SENSOR_RELAY) | ||
| 233 | { | ||
| 234 | if (mGetCommand(message) == C_REQ) | ||
| 235 | send(msg.setType(V_STATUS).setSensor(sensor->id).set(relayRead(sensor))); | ||
| 236 | else if (mGetCommand(message) == C_SET) | ||
| 237 | relayWrite(sensor, message.getBool()); | ||
| 238 | } | ||
| 239 | else if (message.type == V_PERCENTAGE && sensor->type & SENSOR_DIMMER) | ||
| 240 | { | ||
| 241 | if (mGetCommand(message) == C_REQ) | ||
| 242 | send(msg.setType(V_PERCENTAGE).setSensor(sensor->id).set(sensor->dimmer.level)); | ||
| 243 | else if (mGetCommand(message) == C_SET) | ||
| 244 | { | ||
| 245 | uint16_t level = message.getUInt(); | ||
| 246 | fadeDimmer(sensor, (level > 100) ? 100 : level); | ||
| 247 | } | ||
| 248 | } | ||
| 249 | } | ||
| 250 | } | ||
| 251 | |||
| 252 | bool relayRead(struct sensor_t *sensor) | ||
| 253 | { | ||
| 254 | if (sensor->type & SENSOR_RELAY) | ||
| 255 | return digitalRead(sensor->relay.pin) == RELAY_ON; | ||
| 256 | return false; | ||
| 257 | } | ||
| 258 | |||
| 259 | void relayWrite(struct sensor_t *sensor, bool state, bool send_update) | ||
| 260 | { | ||
| 261 | if (!(sensor->type & SENSOR_RELAY)) | ||
| 262 | return; | ||
| 263 | |||
| 264 | Serial.print(F("Incoming change for relay: ")); | ||
| 265 | Serial.print(sensor->relay.pin); | ||
| 266 | Serial.print(F(", New state: ")); | ||
| 267 | Serial.println(state); | ||
| 268 | |||
| 269 | digitalWrite(sensor->relay.pin, state ? RELAY_ON : RELAY_OFF); | ||
| 270 | |||
| 271 | #ifdef SAVE_RESTORE | ||
| 272 | saveState(sensor->id, state ? RELAY_ON : RELAY_OFF); | ||
| 273 | #endif | ||
| 274 | |||
| 275 | if (send_update) | ||
| 276 | send(msg.setType(V_STATUS).setSensor(sensor->id).set(state)); | ||
| 277 | } | ||
| 278 | |||
| 279 | void flipRelay(struct sensor_t *sensor, bool send_update) | ||
| 280 | { | ||
| 281 | relayWrite(sensor, relayRead(sensor) ? RELAY_OFF : RELAY_ON, send_update); | ||
| 282 | } | ||
| 283 | |||
| 284 | inline uint8_t pwmValue(uint8_t level) | ||
| 285 | { | ||
| 286 | const uint8_t pwmtable[101] PROGMEM = { | ||
| 287 | 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, | ||
| 288 | 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, | ||
| 289 | 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, | ||
| 290 | 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, | ||
| 291 | 9, 10, 11, 11, 12, 12, 13, 14, 15, 16, | ||
| 292 | 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, | ||
| 293 | 28, 30, 32, 33, 35, 37, 39, 42, 44, 47, | ||
| 294 | 49, 52, 55, 58, 61, 65, 68, 72, 76, 81, | ||
| 295 | 85, 90, 95, 100, 106, 112, 118, 125, 132, 139, | ||
| 296 | 147, 156, 164, 174, 183, 194, 205, 216, 228, 241, | ||
| 297 | 255 | ||
| 298 | }; | ||
| 299 | return (uint8_t)pgm_read_byte(&pwmtable[level]); | ||
| 300 | } | ||
| 301 | |||
| 302 | void fadeDimmer(struct sensor_t *sensor, uint8_t level, bool send_update) | ||
| 303 | { | ||
| 304 | if (!(sensor->type & SENSOR_DIMMER)) | ||
| 305 | return; | ||
| 306 | if (level > 100) | ||
| 307 | level = 100; | ||
| 308 | |||
| 309 | Serial.print(F("Incoming change for dimmer: ")); | ||
| 310 | Serial.print(sensor->dimmer.pin); | ||
| 311 | Serial.print(F(", New level: ")); | ||
| 312 | Serial.println(level); | ||
| 313 | |||
| 314 | if (level > 0 && sensor->type & SENSOR_RELAY && !relayRead(sensor)) | ||
| 315 | relayWrite(sensor, RELAY_ON); | ||
| 316 | |||
| 317 | int delta = ((int8_t)(level - sensor->dimmer.level) < 0) ? -1 : 1; | ||
| 318 | while (sensor->dimmer.level != level) | ||
| 319 | { | ||
| 320 | sensor->dimmer.level += delta; | ||
| 321 | analogWrite(sensor->dimmer.pin, pwmValue(sensor->dimmer.level)); | ||
| 322 | delay(DIMMER_FADE_DELAY); | ||
| 323 | } | ||
| 324 | |||
| 325 | if (level == 0 && sensor->type & SENSOR_RELAY && relayRead(sensor)) | ||
| 326 | relayWrite(sensor, RELAY_OFF); | ||
| 327 | |||
| 328 | #ifdef SAVE_RESTORE | ||
| 329 | saveState(NUM(sensors) + sensor->id, level); | ||
| 330 | #endif | ||
| 331 | |||
| 332 | if (send_update) | ||
| 333 | send(msg.setType(V_PERCENTAGE).setSensor(sensor->id).set(level)); | ||
| 334 | } | ||
| 335 | |||
