summaryrefslogtreecommitdiffstats
path: root/tv_light/tv_light.ino
blob: 0e82fe3d3e35ebc8397978f31e3171aa88c80670 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/**
 * The MySensors Arduino library handles the wireless radio link and protocol
 * between your home built sensors/actuators and HA controller of choice.
 * The sensors forms a self healing radio network with optional repeaters. Each
 * repeater and gateway builds a routing tables in EEPROM which keeps track of the
 * network topology allowing messages to be routed to nodes.
 */

// Enable debug prints to serial monitor
//#define MY_DEBUG

// configure radio
#define MY_RADIO_RFM69

/** @brief RFM69 frequency to use (RF69_433MHZ for 433MHz, RF69_868MHZ for 868MHz or RF69_915MHZ for 915MHz). */
#define MY_RFM69_FREQUENCY RF69_868MHZ

/** @brief Enable this if you're running the RFM69HW model. */
#define MY_IS_RFM69HW

/** @brief RFM69 Network ID. Use the same for all nodes that will talk to each other. */
#define MY_RFM69_NETWORKID 1

/** @brief Node id defaults to AUTO (tries to fetch id from controller). */
#define MY_NODE_ID 2

/** @brief If set, transport traffic is unmonitored and GW connection is optional */
#define MY_TRANSPORT_DONT_CARE_MODE

/** @brief Node parent defaults to AUTO (tries to find a parent automatically). */
#define MY_PARENT_NODE_ID 0

/** @brief The user-defined AES key to use for EEPROM personalization */
#include "aes_key.h"

// Enable repeater functionality for this node
//#define MY_REPEATER_FEATURE

/** @brief Enables RFM69 automatic transmit power control class. */
//#define MY_RFM69_ATC

#ifdef MY_AES_KEY
/** @brief enables RFM69 encryption */
#define MY_RFM69_ENABLE_ENCRYPTION
#endif

#include <Arduino.h>
#include <MySensors.h>
#include <avr/pgmspace.h>

enum sensor_type : uint8_t
{
  SENSOR_RELAY  = (1u << 0),
  SENSOR_DIMMER = (1u << 1),
  SENSOR_BUTTON = (1u << 2),
};

struct sensor_t
{
  uint8_t id;
  uint8_t type;
  struct
  {
    uint8_t pin;    // relay pin
  } relay;
  struct
  {
    uint8_t  pin;   // dimmer pin
    uint16_t level; // current dim level (0 to 100)
  } dimmer;
};

struct sensor_t sensors[] = {
  {
    .id     = 0,
    .type   = SENSOR_RELAY,
    .relay  = { .pin = 4 },
  },
  {
    .id     = 1,
    .type   = SENSOR_RELAY | SENSOR_DIMMER,
    //.type   = SENSOR_RELAY,
    .relay  = { .pin = 5 },
    .dimmer = { .pin = 6, .level = 100 },
  },
};

//#define SAVE_RESTORE

#define NUM(a) (sizeof(a) / sizeof(*a))

#define RELAY_ON          1  // GPIO value to write to turn on attached relay
#define RELAY_OFF         0  // GPIO value to write to turn off attached relay

#define DIMMER_FADE_DELAY 40 // Delay in ms for each percentage fade up/down (10ms = 1s full-range dim)

#define TEMP_SENSOR_ID     254
#define TEMP_READ_INTERVAL 1000L // read temp every 1 sec
#define TEMP_N_READS_MSG   60*60 // force temp message every n reads
#define TEMP_OFFSET        0

MyMessage msg(0, V_STATUS);

inline void checkTemperature(void);
bool relayRead(struct sensor_t *sensor);
void relayWrite(struct sensor_t *sensor, bool state, bool send_update=false);
void flipRelay(struct sensor_t *sensor, bool send_update=false);
inline uint8_t pwmValue(uint8_t level);
void fadeDimmer(struct sensor_t *sensor, uint8_t level, bool send_update=false);

void before()
{
  // set relay pins to output mode + restore to last known state
  for (uint8_t i = 0; i < NUM(sensors); i++)
  {
    struct sensor_t *sensor = &sensors[i];
    if (sensor->type & SENSOR_RELAY)
    {
      pinMode(sensor->relay.pin, OUTPUT);
#ifdef SAVE_RESTORE
      digitalWrite(sensor->relay.pin, loadState(sensor->id) ? RELAY_ON : RELAY_OFF);
#else
      digitalWrite(sensor->relay.pin, RELAY_OFF);
#endif
    }

    if (sensor->type & SENSOR_DIMMER)
    {
      pinMode(sensor->dimmer.pin, OUTPUT);
#ifdef SAVE_RESTORE
      uint8_t level = loadState(NUM(sensors) + sensor->id;
#else
      uint8_t level = sensor->dimmer.level;
#endif
      if ((sensor->type & SENSOR_RELAY) && !relayRead(sensor))
        level = 0;
      analogWrite(sensor->dimmer.pin, pwmValue(level));
    }
  }

#ifdef MY_AES_KEY
  const uint8_t user_aes_key[16] = { MY_AES_KEY };
  uint8_t cur_aes_key[16];
  hwReadConfigBlock((void*)&cur_aes_key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, sizeof(cur_aes_key));
  if (memcmp(&user_aes_key, &cur_aes_key, 16) != 0)
  {
    hwWriteConfigBlock((void*)user_aes_key, (void*)EEPROM_RF_ENCRYPTION_AES_KEY_ADDRESS, sizeof(user_aes_key));
    debug(PSTR("AES key written\n"));
  }
#endif
}

void setup()
{
#ifdef MY_IS_RFM69HW
  _radio.setHighPower(true);
#endif
#ifdef MY_RFM69_ATC
  _radio.enableAutoPower(-70);
  debug(PSTR("ATC enabled\n"));
#endif
}

void presentation()
{
  sendSketchInfo("TVLight", "1.0");

  // register all sensors to gw (they will be created as child devices)
  for (uint8_t i = 0; i < NUM(sensors); i++)
  {
    struct sensor_t *sensor = &sensors[i];
    if (sensor->type & SENSOR_DIMMER)
      present(sensor->id, S_DIMMER);
    else if (sensor->type & SENSOR_RELAY || sensor->type & SENSOR_BUTTON)
      present(sensor->id, S_BINARY);
  }

#if TEMP_SENSOR_ID >= 0
  present(TEMP_SENSOR_ID, S_TEMP);
#endif
}

void loop()
{
  //TODO maybe call _radio.rcCalibration() all 1000x changes?
#if TEMP_SENSOR_ID >= 0
  checkTemperature();
#endif
}

inline void checkTemperature(void)
{
  static unsigned long lastTempUpdate = millis();
  static unsigned int numTempUpdates = 0;
  static float lastTemp = 0;
  static MyMessage msgTemp(TEMP_SENSOR_ID, V_TEMP);

  unsigned long now = millis();
  if (now - lastTempUpdate > TEMP_READ_INTERVAL)
  {
    float temp = _radio.readTemperature() + TEMP_OFFSET;
    lastTempUpdate = now;
    if (isnan(temp))
      Serial.println(F("Failed reading temperature"));
    else if (abs(temp - lastTemp) >= 2 || numTempUpdates == TEMP_N_READS_MSG)
    {
      lastTemp = temp;
      numTempUpdates = 0;
      send(msgTemp.set(temp, 2));
#ifdef MY_DEBUG
      char str_temp[6];
      dtostrf(temp, 4, 2, str_temp);
      debug(PSTR("Temperature: %s °C\n"), str_temp);
#endif
    }
    else
      ++numTempUpdates;
  }
}

void receive(const MyMessage &message)
{
  if (message.type == V_STATUS || message.type == V_PERCENTAGE)
  {
    uint8_t sensor_id = message.sensor;
    if (sensor_id >= NUM(sensors))
    {
      Serial.print(F("Invalid sensor id:"));
      Serial.println(sensor_id);
      return;
    }

    struct sensor_t *sensor = &sensors[sensor_id];
    if (message.type == V_STATUS && sensor->type & SENSOR_RELAY)
    {
      if (mGetCommand(message) == C_REQ)
        send(msg.setType(V_STATUS).setSensor(sensor->id).set(relayRead(sensor)));
      else if (mGetCommand(message) == C_SET)
        relayWrite(sensor, message.getBool());
    }
    else if (message.type == V_PERCENTAGE && sensor->type & SENSOR_DIMMER)
    {
      if (mGetCommand(message) == C_REQ)
        send(msg.setType(V_PERCENTAGE).setSensor(sensor->id).set(sensor->dimmer.level));
      else if (mGetCommand(message) == C_SET)
      {
        uint16_t level = message.getUInt();
        fadeDimmer(sensor, (level > 100) ? 100 : level);
      }
    }
  }
}

bool relayRead(struct sensor_t *sensor)
{
  if (sensor->type & SENSOR_RELAY)
    return digitalRead(sensor->relay.pin) == RELAY_ON;
  return false;
}

void relayWrite(struct sensor_t *sensor, bool state, bool send_update)
{
  if (!(sensor->type & SENSOR_RELAY))
    return;

  Serial.print(F("Incoming change for relay: "));
  Serial.print(sensor->relay.pin);
  Serial.print(F(", New state: "));
  Serial.println(state);

  digitalWrite(sensor->relay.pin, state ? RELAY_ON : RELAY_OFF);

  if (sensor->type & SENSOR_DIMMER)
    analogWrite(sensor->dimmer.pin, state ? pwmValue(sensor->dimmer.level) : 0);

#ifdef SAVE_RESTORE
  saveState(sensor->id, state ? RELAY_ON : RELAY_OFF);
#endif

  if (send_update)
    send(msg.setType(V_STATUS).setSensor(sensor->id).set(state));
}

void flipRelay(struct sensor_t *sensor, bool send_update)
{
  relayWrite(sensor, relayRead(sensor) ? RELAY_OFF : RELAY_ON, send_update);
}

inline uint8_t pwmValue(uint8_t level)
{
  static const uint8_t pwmtable[101] PROGMEM = {
    0,   1,   1,   1,   1,   1,   1,   2,   2,   2,
    2,   2,   2,   2,   2,   2,   3,   3,   3,   3,
    3,   3,   4,   4,   4,   4,   4,   5,   5,   5,
    5,   6,   6,   6,   7,   7,   8,   8,   8,   9,
    9,   10,  11,  11,  12,  12,  13,  14,  15,  16,
    16,  17,  18,  19,  20,  22,  23,  24,  25,  27,
    28,  30,  32,  33,  35,  37,  39,  42,  44,  47,
    49,  52,  55,  58,  61,  65,  68,  72,  76,  81,
    85,  90,  95,  100, 106, 112, 118, 125, 132, 139,
    147, 156, 164, 174, 183, 194, 205, 216, 228, 241,
    255
  };
  return (uint8_t)pgm_read_byte(&pwmtable[level]);
}

void fadeDimmer(struct sensor_t *sensor, uint8_t level, bool send_update)
{
  if (!(sensor->type & SENSOR_DIMMER))
    return;
  if (level > 100)
    level = 100;

  Serial.print(F("Incoming change for dimmer: "));
  Serial.print(sensor->dimmer.pin);
  Serial.print(F(", New level: "));
  Serial.println(level);

  if (level > 0 && sensor->type & SENSOR_RELAY && !relayRead(sensor))
    relayWrite(sensor, RELAY_ON);

  int delta = ((int8_t)(level - sensor->dimmer.level) < 0) ? -1 : 1;
  while (sensor->dimmer.level != level)
  {
    sensor->dimmer.level += delta;
    analogWrite(sensor->dimmer.pin, pwmValue(sensor->dimmer.level));
    delay(DIMMER_FADE_DELAY);
  }

  if (level == 0 && sensor->type & SENSOR_RELAY && relayRead(sensor))
    relayWrite(sensor, RELAY_OFF);

#ifdef SAVE_RESTORE
  saveState(NUM(sensors) + sensor->id, level);
#endif

  if (send_update)
    send(msg.setType(V_PERCENTAGE).setSensor(sensor->id).set(level));
}